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Abstract

Input aggregation is a simple technique used by state-
of-the-art LiDAR 3D object detectors to improve detection.
However, increasing aggregation is known to have dimin-
ishing returns and even performance degradation, due to
objects responding differently to the number of aggregated
frames. To address this limitation, we propose an efficient
adaptive method, which we call Variable Aggregation De-
tection (VADet). Instead of aggregating the entire scene
using a fixed number of frames, VADet performs aggrega-
tion per object, with the number of frames determined by an
object’s observed properties, such as speed and point den-
sity. VADet thus reduces the inherent trade-offs of fixed ag-
gregation and is not architecture specific. To demonstrate
its benefits, we apply VADet to three popular single-stage
detectors and achieve state-of-the-art performance on the
Waymo dataset.

1. Introduction

LiDAR-based methods give state-of-the-art (SOTA) 3D
object detection performance in autonomous driving. While
object detectors can produce accurate detections from a sin-
gle LiDAR point cloud [3, 18], they have been shown to
benefit from aggregated input consisting of multiple consec-
utive frames. A widely adopted method for incorporating
multi-frame sequential point clouds is what we term fixed
aggregation, where a fixed number of frames are concate-
nated after ego motion correction, often including times-
tamps as an additional feature. This is a simple and effective
method to augment the input with more spatial and temporal
information, without modifying the architecture [1].

Howeyver, it has been observed that the effectiveness of
fixed aggregation diminishes as more frames are used, even-
tually degrading the detection performance [2, 1 9]. Previous
works attribute this degradation to the motion of the objects.
While the point clouds of stationary objects are inherently
aligned after aggregation [7], producing denser and more
complete geometry (Fig. 1b), dynamic object point clouds
become misaligned and distorted from motion (Fig. lc).
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Figure 1. Performance trade-off between stationary (<0.2m/s),
slow ([0.2,10) m/s), and fast (10m/s) vehicles. The relative AP
in (a) illustrates the improvement/degradation relative to using 3-
frame fixed aggregation. (b) and (c) are examples of stationary and
fast-moving vehicles after 16-frame fixed aggregation.

Yang et al. [19] notice that such misalignment makes multi-
frame aggregation unhelpful, even degrading performance
for fast-moving objects. Chen et al. [2] argue that this ef-
fect poses an additional challenge due to different dynamic
objects having different distorted point cloud patterns. This
introduces a performance trade-off, as illustrated in Fig. 1a:
the detection of objects at different speeds is optimal using
different numbers of frames.

To address this challenge, SOTA multi-frame detec-
tors have made use of attention-based feature-level aggre-
gation to more effectively utilize information from past
frames [2, 14, 19]. However, our experiments reveal that
there is considerably more performance to be gained from
modifying the input, before resorting to specific architec-
tural designs, with the additional complexity and computa-
tion costs they entail.
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In this work, we therefore propose VADet (Variable Ag-
gregation Detection): a simple and effective alternative to
fixed aggregation that sets the level of aggregation of an
object according to its properties. As VADet operates at in-
put level, it can be integrated into existing architectures to
improve detection performance without significant modifi-
cations or computational overhead. Moreover, VADet’s low
latency supports its use in real-time applications.

The core of VADet is a function n that maps each de-
tected object to an empirically-optimal number of frames
to aggregate. To construct 7, we propose random aggrega-
tion training (RAT, Sec. 3.1) to efficiently study the effects
of fixed aggregation on detection performance, over a wide
range of configurations.

We use RAT to analyze three representative object de-
tection architectures, establishing that in addition to speed,
as illustrated in Fig. 1, object point density demonstrates an-
other important trade-off (see Fig. 4). The function 7 is then
constructed based on the training data to map an object’s
estimated speed and point density to a number of frames to
aggregate, a process detailed in Sec. 3.2.

Thanks to the per-object aggregation based on 7, VADet
can achieve good performance for objects with different
speed and density in the same scene. Our results (Sec. 5)
show that VADet consistently exceeds the performance of
fixed aggregation, for a given architecture, and can surpass
the performance of much more complex SOTA approaches.

2. Related Work

Feature-based alignment of sequential point clouds has
been explored in 3D object detection. Early work by Luo et
al. [13] uses simple concatenation to combine features from
multiple point clouds, which presents a trade-off between
accuracy and efficiency depending on the feature layer used
for fusion. Naive concatenation of feature maps inevitably
introduces misalignment at the feature level due to ego mo-
tion. Huang et al. [8] instead use an LSTM to encode tem-
poral information as hidden features and address the align-
ment issue by transforming the feature map using ego mo-
tion.

Recently, attention mechanisms have gained popularity
in feature fusion and have shown promising results. Yin et
al. [20] propose a GRU module equipped with spatiotem-
poral attention for better feature alignment. 3D-MAN [19]
and MPPNet [2] both employ attention mechanisms to com-
bine features generated from a single or few-frame region
proposal network to produce more refined detections. To
better utilize the rich multi-scale features, TransPillars [14]
proposes attention-based feature fusion at the voxel level to
preserve the instance and contextual information.

While feature-based multi-frame methods can make ef-
fective use of longer temporal input, they often require mod-
ifications to the architecture and incur additional computa-

tion cost due to the feature transformation and fusion op-
erations. Input-level aggregation, on the other hand, does
not require architectural modifications and has been widely
adopted by recent work. Caesar et al. [ 1] show that directly
concatenating multiple consecutive ego-motion-corrected
point clouds at the input level can not only improve de-
tection performance but also enable velocity prediction for
each detected object, using a velocity regression head.

We refer to this strategy as fixed aggregation, in con-
trast to our proposed variable aggregation. Specifically, in
fixed aggregation, each point cloud from previous times-
tamps undergoes ego-motion correction and is then concate-
nated with the current frame’s point cloud. More formally,
let P, € RN~%3 denote N, point coordinates at timestamp
7, with the corresponding ego pose 7> € SE(3) that rep-
resents the transformation from the ego LiDAR coordinate
system to a common global coordinate system. Then, the
aggregated n-frame point cloud at timestamp 7 is defined

as
n—1

Py =P Pri(T T, (1)
i=0
where @ denotes the concatenation operation. Transfor-
mation 17 LT _; accounts for the motion of ego between
timestamps 7 and 7 — ¢. In addition to spatial coordinates,
intensity, and elongation as point features, a separate chan-
nel is used to encode relative timestamps.

3. Method

VADet addresses the performance trade-off associated
with fixed aggregation by adaptively aggregating different
types of objects with a different number of frames. To
this end, we first introduce Random Aggregation Training
(RAT) to enable a single detector to handle a wide range of
input frame counts. We then describe our variable aggrega-
tion strategy.

3.1. Random Aggregation Training

Studying the impact of the number of input frames on
different types of objects (e.g., stationary vs. dynamic) is a
crucial component of our approach. Existing works tend to
demonstrate the performance trade-offs of aggregation by
evaluating multiple detectors trained separately with differ-
ent fixed frame counts [7, 18, 19]. This is computationally
expensive and thus is often done only for a few configura-
tions. Moreover, we find that assessing performance dif-
ferences between different input configurations, which can
often be subtle, using multiple separately trained models is
prone to high variance.

To efficiently explore the effects of frame counts on
detection performance, we introduce random aggregation
training (RAT), wherein a single detector is trained with
input that has randomly varying numbers of aggregated
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frames per scene. To compensate for the increased variety
of the input, we increase the number of training epochs ac-
cordingly. We find that even though the model’s capacity re-
mains unchanged, RAT allows the model to achieve equiva-
lent or slightly better performance than detectors trained on
different fixed configurations. This is demonstrated in Ta-
ble 1.

Table 1. Vehicle AP of a VoxelNeXt [3] detector trained with sep-
arate fixed configurations and RAT, evaluated with different input
aggregations.

‘3-frame 4-frame 8-frame 16-frame

Separate | 72.90 73.45 74.70 75.06
RAT 73.38 74.13 75.45 75.74

RAT thus offers several advantages. In terms of studying
the effect of the input aggregation, it significantly reduces
the computational cost because training a separate detector
for each input configuration is no longer required. This en-
ables us to cover a broader range of frame counts than exist-
ing work and to more precisely determine the trade-offs for
different types of object. Additionally, as the evaluation is
done with a single model and varying input configurations,
we find that RAT reduces the variance associated with train-
ing, providing us with more consistent results.

In this work, we also use RAT as a pre-training strategy.
The detector trained with RAT serves as an ideal starting
point for our proposed variable aggregation strategy, thanks
to its ability to handle multiple input configurations.

3.2. Variable Aggregation

To address the performance trade-off between different
types of objects, we propose per-object variable aggrega-
tion, which dynamically aggregates each detected object ac-
cording to its properties, such as speed and point density.

In VADet, we first perform velocity estimation for each
detected object. This serves two purposes: first, it allows us
to identify the approximate locations of previously detected
objects in the current frame using a constant velocity mo-
tion model, enabling us to aggregate each region separately
using different aggregation strategies; second, it indicates
the motion state of the object and is an important factor for
determining the number of frames used in the aggregation.
To estimate the velocity of the objects, we follow previous
methods [1] and add channels to the regression task repre-
senting the x and y components of the velocity vector.

Formally, at timestamp 7, we consider a previously
detected bounding box b,_; in the coordinate system
of the current frame with position x,_;, dimensions
(ly—1,wr—1,h;—1), heading 6,_;, estimated velocity
vr_1, and n,_; points from the point cloud at timestamp
7 — 1 inside the bounding box. To achieve better perfor-
mance, our strategy is to find a function n(b,_1) that gives

the empirically best number of frames to aggregate for each
object at the current timestamp 7.

3.2.1 Learning Function 7

To determine the number of aggregated frames that pro-
vide the best detection performance for each object detec-
tion, we consider two important factors: speed and point
density (number of points per unit surface area). Aggre-
gation changes the appearance of the point clouds for ob-
jects of different speeds due to motion distortion, as illus-
trated in Fig. 1b and Fig. Ic, and thus the optimal number of
frames for aggregation varies with the object’s speed. Ad-
ditionally, as more frames are aggregated, the point density
increases proportionally, affecting the number of points rep-
resenting each object and consequently impacting the detec-
tion performance.

In practice, since neither of these factors can be accu-
rately determined for a given object, we use the velocity
prediction from the object detector to estimate its speed
|lvr—1||, and approximate its point density p,_; using the
predicted bounding box dimensions:

Pr—1 = n.,-,1/ (lel Wy + 11 we_y - h’rfl)
2
Since the trade-offs for different types of objects can be
different for each dataset and architecture, we obtain 7 em-
pirically by evaluating the object detector’s performance on
different types of objects over a wide range of input con-
figurations on the training split. This is feasible thanks
to RAT allowing the use of a single model for evaluation.
Specifically, we implement n as a piecewise function us-
ing a lookup table. The table is constructed by dividing
the training set into subcategories of objects with different
speeds and densities, and determining the frame count that
leads to the highest average precision for each subcategory.
While existing works have observed the effects of aggre-
gation on objects with different speeds [2, 7, 19], the way
aggregation interacts with objects with different point den-
sities is not well-studied. In VADet, we establish point den-
sity as an additional factor that should be considered and
evaluated.

3.2.2 Input construction

For each object, we first determine the approximate location
X of the object at the current timestamp 7 according to the
constant velocity model. This is given by

f(j— = Xr—1 +VT—1/f7 (3)

where f is the frame rate of the LiDAR point clouds.
To encompass all the points belonging to the object, in-
cluding past points that could potentially fall outside of the
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Algorithm 1: Variable Aggregation

pointclouds Pr_p,_. +1,..., P
Input: ¢ egoposes T, . +1,---,1r
previous detections b _;
Output: aggregated object points p

Initialize P2 to be an empty point cloud
Compute BT from b.-_; using Egs. (3) to (8)
for i < 0 to nyax — 1 do

P Pr (T T )T

b, « {ET b, € BT,n(bT,l):>i}
P < P & Crop( P b.)

—) T

o
return P,

bounding box, we enlarge the region of aggregation based
on the speed of the object and the number of frames used
in the aggregation. The final region of aggregation for an
object, denoted by = (Xr, L W, hr, éT), is given by

vr—1-(n(br—1) — 1)

Xr=% - 2f , (4)

ZT =0 - lT—l + |V7'—1| . (n(bT—l) — 1)7 (5)
f

wT:U'wT_l, (6)

he =0 heos, %)

Or = br1 ®)

where o > 1 is the enlargement factor that adds a margin to
the aggregation region. Note that the second term in Eq. (5)
is used to enlarge the length of the object to include the
misaligned “smudges” from object motion. Accordingly,
the center of the aggregation region is adjusted in Eq. (4).

Finally, for each region constructed from the process
above, we aggregate the respective number of past frames
in that region. In practice, this operation can be efficiently
implemented by cropping the regions b, for each previous
frame 7 — 4, ¢ < n(b,_1). Point clouds are corrected for
ego motion by transformation 7.~ 17T} _; before aggregation.
This process is detailed in Algorithm 1. The aggregated
objects are then combined with the remaining background
points outside of the aggregation regions.

4. Experimental Setup

To demonstrate our method is effective and can be easily
applied to different architectures, we evaluate VADet using
CenterPoint [21], VoxelNeXt [3], and DSVT [18] on the
large scale Waymo Open Dataset [16]. CenterPoint, Voxel-
NeXt, and DSVT respectively represent the SOTA in dense

voxel-based, fully sparse, and transformer-based 3D object
detectors.

4.1. Dataset

The Waymo dataset is a large-scale autonomous driving
dataset collected under a variety of traffic conditions in San
Francisco, Phoenix, and Mountain View. It consists of 798
sequences for the training split, 202 sequences for the vali-
dation split, and 150 sequences for the held-back test split.
Each sequence is approximately 20 seconds long.

Waymo uses multiple LIiDAR sensors operating at 10 Hz,
resulting in approximately 200 point clouds per sequence.
The main sensor is a top-mounted proprietary 64-beam
rotating LiDAR. There are also four close-range LiDARs
mounted to the side of the vehicle. In addition to the inten-
sity channel, Waymo’s sensors also produce elongation for
each point. We use points from all five LIDARs by concate-
nating them in the ego vehicle coordinate system.

4.2. Evaluation Metrics

For overall object detection performance, we use the of-
ficial Waymo evaluation suite. Unless specified otherwise,
we report the level 2 average precision (AP) for Vehicle,
which includes very sparse objects (< 5 points). The IoU
threshold used for matching true positives is 0.7.

Evaluating a specific subset of the objects (e.g., dynamic
objects) for more detailed analysis requires more careful
handling due to false positives that cannot be matched with
any ground truth. Waymo evaluation suite provides func-
tionalities to perform such evaluation. Specifically, the sub-
set precision and recall are defined as follows:

TPsubset
TPsubset + FPsubset + FPunknown ’
TPsubset
TPsubset + FNsubset .

€))

Precwaymo =

(10)

Recwaymo =

TPgsubset and FNgypset are the number of true positives and
false negatives within the subset of objects. FPgypset iS the
number of false positives that overlap with some objects in
the subset but do not meet the IoU threshold. FP ,nknown 18
the number of objects that do not overlap with any ground
truth.

However, we argue that this formulation cannot cor-
rectly reflect the detection performance of a subset because
FP unknown 1S independent of the subset and biases the pre-
cision depending on the size of the subset. The consequence
is that subsets of different sizes are incomparable and the
weighted sum of subset precisions underestimates the pre-
cision of the union of subsets.

To address this issue, we introduce a definition of preci-
sion that weights FP,,known by the proportion of objects in
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Table 2. Dynamic vehicle AP of a CenterPoint model on the Waymo dataset using different subset evaluation metrics.

Metric Dynamic Subsets (m/s) Weighted
>0.2m/s | [0.2,1) [1,3) [3,5) [57) [7.9) [9.11) [11,13)[13,15)[15,17)[17,20) >20  average
Waymo 72.9 63.0 624 629 665 689 668 64.1 61.8 640 670 629 64.7
Ours 74.4 71.6 698 722 746 76.6 763 757 753 783 81.6 783 74.4
the subset: We initialize our VADet models with the weights from
TP, ypset the baseline models, then fine-tune them for an additional
subse . . . . o e
Precsubset = P T FP + Nawe . FP epoch using cosine learning rate decay with an initial learn-
subset subset T "N ioral unknown ing rate of 0.0001. Since our models rely on information

1D
Ngubset and Niota1 are the number of objects in the subset
and the total number of objects, respectively. The defini-
tion of recall remains unchanged. In contrast to the stan-
dard Waymo metric, this formulation allows the compari-
son and combination of subset APs, as illustrated in Table 2.
We note, in particular, that when using our formulation the
weighted average of subset APs weighted by subset size is
closer to the AP of the union of the subsets.

4.3. Implementation Details

4.3.1 Architectures

CenterPoint [21] and VoxelNeXt [3] are both single stage
CNN-based 3D object detectors. The input point cloud first
undergoes voxelization and is then fed to a sparse convolu-
tional backbone. Multiple detection heads are used to sep-
arately produce bounding box attributes, including confi-
dence score, location, and box dimensions. DSVT [18]is an
emerging transformer-based 3D object detector. In DSVT,
the traditional convolution backbone is replaced with mul-
tiple transformer blocks consisting of shifted window and
partition-based self-attention operations.

Following [ 1], we add a two-layer regression head to pre-
dict an object’s velocity vector for all architectures. For
DSVT, we use the pillar variant (which we denote DSVT-
P). As the dynamic voxelization adopted by the original
work cannot be scaled beyond 4-frame aggregation on our
hardware, we use a traditional static voxelization where for
each voxel, at most 40 points are randomly selected and
processed. To make the computation tractable, we further
reduce the input channels from 192 to 96, and the hidden
channels from 384 to 192.

4.3.2 Training

The baseline models are trained on the entire Waymo train-
ing split for 20 epochs across 8 NVIDIA A6000 GPUs using
the proposed RAT strategy. We use the Adam optimizer and
a one-cycle learning rate schedule, with an initial learning
rate of 0.0003 and a maximum learning rate of 0.003. We
use a total batch size of 32 for CenterPoint, 32 for Voxel-
NeXt, and 16 for DSVT-P.

cached from previous frames, including point clouds and
predictions, the standard frame-based shuffling cannot be
applied during training. Instead, we divide the dataset into
mini-sequences with a maximum of 32 frames and shuffle
the mini-sequences. This introduces randomness while en-
suring that frames appear in their correct sequence. Further-
more, as the performance of a model can fluctuate during
training (due to ongoing optimization), following [5], we
load the offline predictions from the baseline models using
3-frame fixed aggregation during training.

4.3.3 Specifying n

We implement 7 as a lookup table: we subdivide the train-
ing dataset based on speed and point cloud density and em-
pirically determine the frame count that leads to the high-
est average precision for each subcategory (Sec. 3.2). The
speed and density thresholds are set to [0.00, 0.20, 1.55,
3.63, 5.90, 81.6, 11.34, 17.53]m/s and [0.00, 0.68, 1.86,
3.86, 8.02, 18.81, 71.37] pts/m? respectively. They are cho-
sen based on the training set object statistics to ensure a
sufficient number of objects in each bin for evaluation. For
each speed and density combination, we evaluate the base-
line model on 3—16-frame input and select the frame count
with the highest AP performance. Background points un-
dergo a fixed 3-frame aggregation.

5. Results and Analysis

We present the overall performance of VADet compared
to baseline models and SOTA methods in Section 5.1.
To demonstrate the better trade-offs achieved by VADet,
in Section 5.3 we perform a detailed evaluation based on
speed and point cloud density.

5.1. Overall Performance

Table 3 shows that, for all three architectures, VADet
demonstrates superior performance compared to baseline
models using different fixed frame counts. In particular,
VADet using CenterPoint achieves 71.5 AP compared to
71.0 AP using 12, 13, 14, or 15-frame aggregation. For
VoxelNeXt, VADet achieves 76.5 AP compared to 75.8 AP
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Table 3. Overall vehicle AP on the Waymo validation split. The best performance is in bold and the second best is underlined.

‘VADet‘ 3 4 Sf of 7t 8 9f 10f 11f 12f 13f 14f 15f 16f
CenterPoint | 71.5 | 68.1 68.9 69.5 70.0 70.3 70.5 70.7 70.8 709 71.0 71.0 71.0 71.0 70.9
VoxelNeXt | 76.5 | 734 74.1 74.6 750 753 754 756 757 7577 75.8 75.8 75.8 75.8 75.7
DSVT-P 74.5 | 695 703 70.8 71.4 71.7 72.0 722 724 72.6 7277 72.8 73.0 73.0 73.2
Table 4. Overall vehicle performance on the Waymo validation — | |
split compared with SOTA multi-frame detectors. s
Method | #frames | L1 AP/APH | L2 AP/APH i
PillarNeXt-B [9] 3 80.6/80.1 72.9/72.4 ) iz oo g v
DSVT-pillar [ 18] 4 81.7/81.2 73.8/73.4 o J—- ’
DSVT-voxel [18] 4 81.8/81.4 74.1/73.6
FSD++ [5] 7 81.4/80.9 73.3/72.9 0] me PRI ED
CenterFormer [22] 8 78.8/78.3 74.3/73.8
3D-MAN [19] 16 74.5/74.0 67.6/67.1 (a) 3-frame (b) 16-frame (c) VADet
MPPNet [2] 16 82.7/82.3 75.4/75.0
VADet-CenterPoint 3.1 79.0/78.5 71.7/71.3 Figure 2. Qualitative results comparing 3-frame and 16-frame
VADet-DSVT-P 3-1 82.0/81.6 74.5/74.1 fixed aggregation with VADet. Red and green bounding boxes are
VADet-VoxelNeXt 3-16 83.9/83.4 76.6/76.1 ground truth and predictions, respectively. Predictions are filtered

Table 5. Overall vehicle performance on the Waymo test split com-
pared with other methods (without TTA or ensemble).

Method | #frames | Modality | L2 AP/APH
AFDetV2 [6] 2 L 74.3/73.9
PV-RCNN++ [15] 2 L 76.3/75.9
SWFormer [17] 3 L 75.0/74.7
PillarNeXt-B [9] 3 L 76.2/75.8
FSD++ [5] 7 L 77.1/76.7
3D-MAN [19] 16 L 70.4/70.0
MPPNet [2] 16 L 77.3/76.9
CenterFormer [22] 16 L 78.7/78.3
BEVFusion [12] 3 C+L 77.9/717.5
DeepFusion [11] 5 C+L 76.1/75.7
HorizonLiDAR3D [4] 5 C+L 78.2/77.8
LoGoNet [10] 5 C+L 79.7/79.3
VADet-VoxelNeXt | 3-16 | L | 79.8/79.4

using 12, 13, 14, or 15-frame aggregation. DSVT-P with
VADet achieves 74.5 AP compared to 73.2 AP using 16-
frame aggregation.

When compared with SOTA object detection methods
in Table 4 and Table 5, VADet-equipped models also have
competitive performance on both the validation and test
splits. Most notably, our single-stage VADet-VoxelNeXt
achieves 76.1 and 79.4 level 2 APH on the validation and
test split respectively, outperforming two-stage multi-frame
methods such as MPPNet [2] by a large margin, with lower
computation overhead. Specifically, we measure that the
second stage proposed by MPPNet introduces an additional
900-2500 ms latency over the base detector, while VADet
only requires an additional 50 ms overhead for input ag-
gregation, which we believe can be further optimized with

with 0.5 confidence threshold for visual clarity.

a GPU-accelerated implementation. Furthermore, with a
powerful backbone such as VoxelNeXt, our method can
match the performance of recent SOTA camera-LiDAR fu-
sion methods such as LoGoNet [10].

Our results demonstrate that VADet can effectively uti-
lize multiple frames to achieve SOTA detection perfor-
mance, suggesting that by addressing various performance
trade-offs with carefully constructed input, a simple single-
stage object detection architecture such as VoxelNeXt can
outperform much more complex SOTA methods.

5.2. Qualitative Results

Qualitative results comparing 3-frame and 16-frame
fixed aggregation with VADet are shown in Fig. 2. Over-
all, we observe that 16-frame input appears much denser
than 3-frame and VADet. This is especially noticeable for
background points, which may not be beneficial to detecting
objects and introduce unnecessary computation.

The 3-frame model is unable to detect the occluded sta-
tionary vehicles depicted in the upper images, due to the
lack of points. While these objects appear more complete
with 16 frames, the model can only partially detect them.
We hypothesize this is due to the dense background points
leading to confusion. VADet, on the other hand, aggregates
only object points while keeping the background sparse, and
therefore can accurately detect all vehicles.

Similarly, for the fast-moving vehicles seen in the lower
images, 16-frame aggregation results in long “smudges”
around each vehicle, leading to inaccurate localization.
In these situations, VADet does not over-aggregate these
objects and benefits from the more accurate detections
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Table 6.

Vehicle AP breakdown by speed.

| Speed |VADet| 3f 4f 5 6f 7f 8 9f 10f 11f 12f 13f 14f 15f 16f
Stationary | 70.3 | 65.8 66.8 67.6 68.1 68.5 68.8 69.1 693 69.4 69.5 69.6 69.6 69.7 69.7
CenterPoint Slow 75.0 | 74.1 745 747 749 749 748 748 747 74.6 74.6 745 744 742 74.0
Fast 79.5 | 789 79.0 79.1 79.0 78.9 78.9 788 78.6 78.3 779 778 774 77.0 76.6
Stationary | 74.3 | 70.4 71.3 719 723 72.6 729 73.1 732 733 734 735 735 73.6 73.6
VoxelNeXt Slow 79.6 | 785 789 79.2 793 794 794 793 793 79.2 79.2 79.1 789 78.8 78.7
Fast 84.2 |83.6 83.8 83.8 83.9 83.8 83.7 83.6 83.5 83.3 83.2 83.0 82.6 824 81.9
Stationary | 72.3 | 66.4 674 68.1 68.7 69.1 69.5 69.8 70.1 70.3 70.6 70.7 709 71.0 71.2
DSVT-P Slow 773 | 750 754 755 756 75.7 75.6 755 755 75.5 755 755 754 753 753
Fast 82.6 |81.2 81.2 81.0 80.9 80.8 80.7 80.7 80.6 80.6 80.5 80.5 80.4 80.3 80.2
84
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Figure 3. AP vs. the number of frames for stationary (<0.2 m/s), slow ([0.2,10) m/s), and fast-moving (>10 m/s) vehicles.

achieved by 3-frame input.

5.3. Breakdown Analysis

The overall performance degradation at 16-frame fixed
aggregation, if any, appears to be minuscule for the baseline
models: just 0.1% degradation for CenterPoint and Voxel-
NeXt. This is due to the extreme imbalance between differ-
ent types of objects in the dataset. For instance, the overall
results are skewed in favour of the approximately 80% sta-
tionary vehicles in the dataset, which negatively affects the
performance of dynamic objects. As a result, we perform
a breakdown analysis to highlight the performance trade-
offs and demonstrate how VADet can benefit objects that
are negatively impacted by fixed aggregation.

5.3.1 Speed

To illustrate the impact of input aggregation on objects with
different speeds, we divide the vehicle class into station-
ary (<0.2m/s), slow ([0.2,10) m/s), and fast (>10 m/s) sub-
categories. Stationary, slow, and fast vehicles respectively
amount to 79.7%, 14.2%, and 6.1% of the Waymo valida-
tion set. The AP performance for each subcategory is re-
ported in Table 6.

Our results for the baseline models are consistent with
the trade-off observed in existing work and further sug-
gest that this effect is consistent across different architec-
tures. Moreover, the results show that the optimal num-

ber of frames can be different for objects with different
speeds. Specifically, the stationary vehicle performance
(Fig. 3a) increases as more frames are used for aggrega-
tion: all baseline models achieve the best performance with
16-frame input, suggesting more aggregation is beneficial.
Slow vehicles (Fig. 3b), on the other hand, reach maxi-
mum performance at 7 frames, while for fast-moving ve-
hicles (Fig. 3c), a large degradation can be observed when
more frames are used, indicating aggregating fewer frames
is more favourable.

VADet, on the other hand, does not exhibit such a per-
formance trade-off. For all three architectures and subcate-
gories, VADet achieves higher AP than the best fixed aggre-
gation configuration in each respective subcategory (under-
lined in Table 6). This not only highlights the effectiveness
of VADet at mitigating the performance trade-off between
objects at different speeds but also demonstrates the appli-
cability of VADet to various architectures.

5.3.2 Point density

To demonstrate that input aggregation can also lead to a
performance trade-off between objects with different point
cloud densities, we evaluate and report the performance of
vehicles with different point cloud densities. Using Eq. (2),
we divide the vehicle class into sparse (<2 pts/m?), medium
([2,100) pts/m?), and dense (>100 pts/m?) subcategories.
For stationary objects, we observe the same trend seen
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Table 7. Dynamic vehicle AP performance breakdown by point cloud density.

\Density \VADet\ 3f 4 S5f eof 7 8 9f 10f 11f 12f 13f 14f 15f 16f
Sparse 27.6 244 256 263 265 266 264 264 26.1 258 25.6 252 249 244 239
CenterPoint | Medium | 87.8 |87.5 87.5 87.6 87.6 87.6 87.6 87.5 874 873 87.1 87.1 869 86.7 86.5
Dense 989 1989 989 989 989 98.8 98.8 98.8 98.8 98.7 98.7 98.7 98.6 98.5 98.5
Sparse 32.8 [29.8 30.8 31.6 32.0 322 32.0 319 31.6 31.2 31.0 30.8 30.1 29.8 29.3
VoxelNeXt | Medium | 91.5 [91.0 91.2 91.3 91.2 91.3 91.2 91.2 91.1 91.1 91.0 91.0 90.8 90.7 90.5
Dense 99.3 1994 994 994 994 994 99.3 99.3 99.3 99.3 99.2 99.2 99.2 99.3 99.2
Sparse 28.0 [24.8 256 26.0 262 263 263 264 264 263 264 263 262 26.1 26.0
DSVT-P | Medium | 89.9 |88.1 88.2 88.2 88.2 88.1 88.0 879 879 87.8 87.8 87.8 87.7 87.6 87.5
Dense 99.0 |98.8 98.7 98.7 98.7 98.6 98.5 98.5 98.4 984 983 98.3 98.2 98.0 98.1
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Figure 4. AP vs. the number of frames for sparse (<2 pts/m2), medium ((2,100] pts/m2), and dense (>100 pts/mz) dynamic vehicles.

in Fig. 3a, suggesting the performance is not influenced by
the point cloud density. The following analysis therefore
focuses on dynamic objects (>0.2 m/s), with the full results
for stationary objects in the supplementary material. The
dynamic vehicles in the validation set contain 23.9% sparse,
67.9% medium, and 8.2% dense vehicles according to our
definition. The AP performance for each subcategory is de-
tailed in Table 7.

While we have previously observed that dynamic ob-
jects favour fewer input frame counts, we notice in Fig. 4a
that sparse objects can still benefit from more input ag-
gregation: up to 7-frame aggregation for CenterPoint and
VoxelNeXt, and up to 12-frame aggregation for DSVT-P.
On the other hand, for denser objects (Figs. 4b and 4c),
higher frame counts become harmful to the detection per-
formance. All three architectures achieve the best perfor-
mance for medium density vehicles with 5-frame input, and
dense vehicles with 3-frame input. Our results highlight a
trade-off that has not been studied in existing work and un-
derscores the necessity of considering point density in our
proposed approach.

Compared to fixed aggregation, VADet is comparable to
the best performance in each subcategory, surpassing fixed
aggregation in many cases. This demonstrates that VADet
is also effective at addressing the trade-off between objects
with different point densities for different architectures.

6. Limitations and Extensions

Input aggregation adds information to sparse detections,
up to the point that an object’s motion or other character-
istics cause confusion. VADet therefore improves the de-
tection of certain objects by not over-aggregating them, but
their detections may nevertheless be sparse and could ben-
efit from aggregation. For such objects, the addition of a
different aggregation approach would be necessary.

In this work, we have identified speed and point den-
sity as important features to provide as inputs to function 7.
We hypothesize that a future implementation of 7 as a more
abstract learned function from point clouds to numbers of
frames will produce even better results.

In the preceding text, we have focused on the Waymo
vehicle class—a common expedient to simplify compar-
isons. In the supplementary material, we give further results
that show VADet is also effective on the Waymo pedestrian
class. While VADet’s benefits will be class and dataset de-
pendent, we do not anticipate any obvious limitations.

7. Conclusion

We have addressed the inherent performance trade-off of
fixed aggregation by proposing VADet, a variable aggrega-
tion approach that can be easily applied to different archi-
tectures with minimal modifications. Our extensive evalua-
tion shows that VADet can effectively combat the trade-off
and achieve SOTA performance.
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