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Abstract— In the context of LiDAR-based 3D object de-
tection, we consider the problem of generating high-quality
pseudo-labels from very sparsely labelled data. We focus on
track-based auto-labelling, which is a class of state-of-the-art
pseudo-labelling methods that exploits the sequential nature
of point cloud collection, but typically expects training data
to be densely labelled. In this work, we analyze different
ways to adapt a particular track-based auto-labelling approach
to sparsely labelled sequential data from the Waymo Open
Dataset, valuing balanced performance on stationary and dy-
namic vehicles. We thus propose methods that achieve high
performance on both of these categories, with as few as one
labelled frame per sequence.

I. INTRODUCTION

This paper concerns 3D object detection based on Light
Detection And Ranging (LiDAR) technology, which offers
high-resolution 3D sensing capabilities and robustness to
varied lighting conditions. Vehicle-mounted LiDAR sensors
provide a dynamic perspective: as the vehicle moves, LiDAR
data is collected as a sequence of frames at a fixed frequency,
typically ≥ 10Hz, such that every frame provides a slightly
different viewpoint of the scene. We focus on methods
that exploit the temporal continuity and smoothly varying
perspectives provided by such sequential data.

To train a deep model that can accurately detect objects
from LiDAR scans, it is necessary to obtain a large amount
of training data with high-quality annotations for supervision.
Such annotations are typically provided by human annotators
and are therefore expensive to obtain. To reduce the human
annotation effort, various strategies make use of unlabelled
data, since simply collecting LiDAR sequences is relatively
cheap. Such strategies include the following:

• Interpolation, where temporally intermediate annota-
tions are automatically inferred from the available hu-
man annotations within a sequence; interpolated objects
inherit the human-labelled identities and dimensions of
the objects from which they were interpolated.

• Pseudo-labelling, where a pre-trained model is used to
detect and (pseudo-)label objects in raw sensor data;
pseudo-labels have no inherent identities related to
human labels.

• Semi-supervised learning, where pseudo-labels from a
base model are used in conjunction with human anno-
tations to train a new model that potentially produces
better pseudo-labels.

Fig. 1: Our track-based auto-labeller trained with only 1.5%
labels (orange) has greater accuracy and more true positives
than a standard high-performance model trained using 100%
labels (blue), illustrated against ground-truth vehicles (grey).
Solid borders indicate detection by a single model; dashed
borders indicate detection by both. For a fair comparison,
only predictions with scores > 0.5 are shown.

• Track-based auto-labelling is a form of offline pseudo-
labelling that takes advantage of the track-based nature
of sequential data; having access to both past and future
trajectories of objects achieves levels of performance
that are unachievable with online approaches that only
have access to the past.

In this work, we consider the problem of generating the
best possible pseudo-labels with the fewest human-annotated
labels. We analyze various techniques and ultimately propose
methods that achieve high performance with as little as
0.5% labelled data. Figure 1 illustrates typical results of our
proposed methods.

To reduce labelling, some datasets provide unlabelled
sequences in addition to fully labelled sequences [13, 3],
while others annotate all sequences at a lower frequency [1,
9, 10]. We refer to the latter as sparse labelling. Most state-
of-the-art (SOTA) track-based auto-labelling methods assume
full availability of annotations in either all sequences [5,
19, 20] or a subset of them [11, 7], then train a model on
the fully labelled sequences. However, reducing the number
of human-labelled sequences inevitably results in a loss of
data diversity. Hence, [11, 7] also make use of unlabelled
sequences to further train under the semi-supervised learning
paradigm.

Some datasets use simple linear interpolation to create
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intermediate labels from adjacent human-created annota-
tions [1, 9]. The interpolated labels are then treated as ground
truth. Interpolation is thus an obvious candidate to overcome
the problem of sparsely labelled data, but even the use of
sophisticated interpolation models is not enough at the very
sparse labelling frequencies that are of interest to us. We
nevertheless show how interpolated labels can be combined
with other pseudo-labels in a highly effective way.

It has been observed that commonly used public datasets,
such as the Waymo Open Dataset [13] and nuScenes [1],
have a strong bias towards stationary objects [6]. While
some training approaches make explicit use of this fact [6],
others do so implicitly, achieving high overall performance
by increasing the detection performance of stationary objects.
In contrast to these, we seek a balanced performance on
stationary and dynamic objects, to avoid amplifying any
existing biases in the data.

In our experiments, we use a standard CenterPoint ar-
chitecture for our base models, and choose CTRL [5] as
the basis of our track-based auto-labelling pipeline (de-
scribed in Sect. III-B). We perform training experiments
on the Waymo Open Dataset [13], whose LiDAR data is
collected in sequences that each contain approximately 200
frames. We consider labelling frequencies of (1, 2, 3, 5, 9)
frames per sequence (fps), which amount to approximately
(0.5, 1.0, 1.5, 2.5, 4.5)% of the data. These frequencies cor-
respond to levels of sparsity that are sufficient to illus-
trate interesting phenomena that we believe will also occur
with other datasets. Choosing fewer than one frame per
sequence is equivalent to choosing a subset of the sequences,
which would create a somewhat orthogonal and out-of-
scope problem. The performance we achieve using 9 fps with
simple training approaches leaves little headroom for further
improvements, making higher frequencies uninteresting in
the present context.

Our contributions are as follows:
• We adapt a track-based auto-labelling pipeline for use

with sequential training data that is not fully labelled.
• We conduct experiments with extreme levels of label

sparsity that we believe have not been explored before.
• We investigate sparse labels and three pseudo-label

generation methods for training an auto-labelling model,
settling on a combination of interpolation and semi-
supervised learning.

• We thus propose track-based auto-labelling methods
that work well with very sparsely labelled data and that
outperform a standard detector trained on fully labelled
data. Our methods also exhibit balanced detection on
stationary and dynamic vehicles.

II. RELATED WORK

A. Track-based auto-labelling

Earlier works in LiDAR-based 3D auto-labelling either use
a pre-trained 2D model [21, 12], focus only on stationary
objects [15], or are model-free and rely instead on tracking
and pose estimation [4, 8]. However, despite requiring little

to no supervision, they struggle to produce high-quality
pseudo-labels that are comparable to human annotations.
More recent works [11, 20, 5, 7, 19] adopt a two-stage object
trajectory refinement approach: the initial stage model gener-
ates coarse object predictions using an object detector and a
multi-object tracker, then the refinement stage model, usually
trained in a supervised manner, improves these predictions
by considering their entire trajectories. Some methods handle
stationary and dynamic objects separately [11], while others
do not differentiate by object motion [20, 5, 7, 19].

Many of these methods [20, 19, 5] only train under
full supervision, expecting all sequences to contain ground-
truth annotations at every frame. While [11, 7] evaluate
their approaches under the framework of semi-supervised
learning, they still expect a subset of sequences to be fully
annotated, in conjunction with a subset of fully unlabelled
sequences. We have not found existing work in offline auto-
labelling that specifically handles sparsely labelled data.

B. Datasets with sequential data

A large number of driving datasets have been developed
following the rapid advancements in autonomous driving
research. They vary by characteristics such as size, location,
modalities, and annotation strategy. Focusing on the latter,
densely labelled datasets like the Waymo Open Dataset [13],
Argoverse 2 Sensor Dataset [17], and PandaSet [18] provide
annotations for all LiDAR point clouds, resulting in a la-
belling frequency equal to the LiDAR’s operating frequency.
In contrast, nuScenes [1], H3D [9], and CADC [10] only la-
bel keyframes, at fixed intervals, leaving intermediate frames
unlabelled. Specifically, nuScenes annotates at 2 Hz, given a
20 Hz LiDAR, whereas H3D and CADC annotate at 2 Hz
and 3.3 Hz, respectively, given a 10 Hz LiDAR. nuScenes
and H3D propose linearly interpolating labels for unlabelled
frames, suggesting that 2 Hz is robust to up-sampling, but
there is a lack of evaluation results.

III. METHODS

We compare track-based and object-based pseudo-
labelling methods to assess the effectiveness of track-based
auto-labelling. Our experiments have one or two training
stages. Our experiments have one or two training stages,
where each stage corresponds to training a model from
randomized weights. When present, a second stage uses the
output of the first stage.

Figure 2 gives an overview of the methods and the result-
ing models we evaluate in this work. The braces indicate
two types of supervision based on their architecture and
training pipeline, distinguishing between object- and track-
based methods. In the first type, each Base model (in blue)
is an object detector with object-based supervision, meaning
that individual object instances are supervised independently.
In the second type, each model (in green) is a refinement
module, based on the architecture from CTRL [5], which
performs track-based supervision on tracks resulting from
the tracker acting on detections from the Base detector.
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Fig. 2: Overview and relationship between the methods and the resulting models we train, classified by their architecture
and supervision. Methods with a dotted border are our baselines; our proposed methods have bolded borders.

In Fig. 2, the dashed grey boxes classify the methods and
models into three additional types of supervision depending
on the quantity and type of labels used. Full supervision
means that all labels for all frames in all sequences are
human-annotated and available during training, hence de-
noted by 100%. Sparse supervision, however, denoted by
sparse, has access to only sparse labels during training.
These sparse labels are human-annotated GT labels that
come from only a small number of evenly distributed frames
within a sequence. Finally, semi-supervision involves training
on a mixture of human-annotated GT labels and pseudo-
labels. The latter can be created from either interpolation
(denoted by int), a pre-trained model (denoted by ssl), or a
combination of both (denoted by int+ssl).

The fully supervised refinement model CTRL100% uses
the fully supervised Base100% as its base detector. All other
CTRL models use Basesparse as their base detector to ensure
comparable results. Sparse and semi-supervision models are
trained at different label sparsity levels, as explained shortly.

Our choice of model architecture and training parame-
ters, which are shared across all baseline and subsequent
experiments to ensure comparability, are as follows. For all
Base experiments, we opt for the single-frame CenterPoint
architecture for our off-the-shelf object detector, due to its
popularity and familiarity. We use OpenPCDet’s [14] default
configurations for single-frame CenterPoint, such as a non-
maximum suppression (NMS) threshold of 0.7 and a one-
cycle schedule with a maximum learning rate of 0.003 using
the Adam optimizer. Data augmentation, including random
world flip, rotation, scaling, and translation, is applied dur-
ing training. For all CTRL experiments, we adopt CTRL’s
version of ImmortalTracker [16], with a NMS threshold of
0.25 and a score threshold of 0.5. The refinement module is
trained with default configurations, including noise augmen-
tation for bounding box centres, sizes, and heading angles,
as well as global track augmentation, such as random flip,
rotation, scale, and translation.

Each of our fully supervised models is trained for 6
epochs, which is sufficient for the dataset size. Since models
trained on sparser sets of labels receive less supervision, we
compensate with more training time to ensure comparable

results. Hence, for sparsely supervised models, we normalize
the training time by increasing it proportionally to the
fraction of labels available for supervision. We observed
overfitting in only the CTRLsparse experiments. In this case,
we reduced the number of epochs until overfitting was no
longer observed.
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Fig. 3: Sparse GT: numbers identify labelled frames for given
fps (frames per sequence); dots indicate 9 fps, with 20 frames
between any two adjacent dots.

A. Dataset and sequence subsampling

We use the Waymo Open Dataset [13] due to its large
scale and high data diversity. We use only the vehicle class to
demonstrate our findings, since vehicle is the majority class
and has sufficient depth and diversity to give meaningful
results that we believe will generalize to other classes.
We experiment with all 798 training and 202 validation
sequences. We use all available GT labels in fully supervised
training and subsample uniformly across all sequences to
create sparse annotations for sparsely supervised training.
We illustrate our sampling approach in Fig. 3. The original
sequences have lengths in the range 171–200 frames, but
we align the sequences by their midpoints and trim them
symmetrically to a common length of 169 frames to ensure
consistent subsampling intervals. This length allows us to
have uniformly sampled ground-truth of 1, 2, 3, 5, and 9
labelled frames per sequence (fps), while also making the
sparser samples a subset of the denser ones.

The following subsections first give the necessary back-
ground on CTRL, our baseline track-based auto-labelling
method, then describe each of the ten methods from Fig. 2
in more detail.
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Fig. 4: Overview of the refinement training pipeline in track-based auto-labelling using sparsely labelled data. (1) A base
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method) extracts features
from those input tracks and supervises them individually using either sparse or pseudo-label tracks, depending on the method.

B. Track-based auto-labelling pipeline

We choose SOTA auto-labelling method CTRL [5] as the
basis of our two-stage refinement experiments. Referring
to Fig. 4, CTRL consists of three main components: (1) an
off-the-shelf object detector localizes initial object instances
within each input LiDAR point cloud (PC); (2) a multi-
object tracker tracks as many objects as possible across
subsequent frames, while forming coarse object trajectories;
(3) a refinement module learns to refine the trajectories
using both track- and object-level features. Internally, the
refinement module first uses the aggregated PCs of the input
track to perform track-level feature extraction. Next, it uses
the track proposals to crop those track-level features around
each object to perform object-level feature extraction. Fi-
nally, after assigning a GT bounding box to each proposal, it
supervises their refinement individually through classification
and regression losses. We refer the reader to [5] for more
architectural details on CTRL.

C. Notation

We refer to the first stage object detector models as
Baseimethod and the second stage refinement models as
CTRLi

method , where i ∈ {1, 2, 3, 5, 9} is the chosen sparsity
level and method ∈ {100%, sparse, int, ssl, int+ssl} denotes
the method name. When describing the model type, rather
than the specific model, we omit the sparsity level and use
the simplified notation Basemethod and CTRLmethod (Fig. 2).

We define the following sets to represent the various input
PCs and GT labels used in training:

X = {x ∈ PCs from all frames}
Xi = {x ∈ PCs from frames sampled at sparsity i fps}
Xi = (X \Xi) = {x ∈ PCs from frames not sampled}
Y = {y ∈ GT labels from all frames}
Yi = {y ∈ GT labels from frames sampled at sparsity i fps}
Yi = f

(
Yi, Xi

)
where i ∈ {1, 2, 3, 5, 9} and f ∈ {interpolate, pseudo-label}.
In general, Yi can be seen as a set of pseudo-labels generated
directly (by interpolation) or indirectly (by training a model)

from the available GT data. The specific sets used by each
of our methods are described in their respective sections.

D. Full supervision baselines: Base100% & CTRL100%

Fully supervised models are used as baselines to show the
upper bound of what is achievable when the highest level of
human annotation is available. All subsequent experiments
demonstrate a comparatively reduced performance due to the
effects of label sparsity. We thus use the set of all available
point clouds X and their corresponding annotations Y to
train Base100% and CTRL100%. Once Base100% has completed
training, we can use it for second-stage refinement training,
as described in Sect. III-B. We run inference with Base100%
on X to produce output detections that are then parsed by the
tracker to obtain the track inputs needed to train CTRL100%.

E. Sparse supervision models: Basesparse & CTRLsparse

Sparse supervision is a simple way to handle sparsely
labelled data, i.e., a model is supervised solely using the
sparse labels that are available. Since the base detector su-
pervises individual object instances independently, regardless
of the sequential nature of their trajectories, Baseisparse can be
trained using Yi and the respective sparsely sampled point
clouds Xi without any architectural modification. Prior to
training, we simply subsample point clouds to create Xi, the
same way we subsample labels Yi. Then, we generate the
sparse GT database for augmentation and train as usual.

The refinement module in CTRL, however, does not
natively support sparse supervision. Input point clouds are
collected at the LiDAR’s operational frequency of 10Hz
before going through initial detection by the Base model.
The resulting object detections are fed into the tracker and
converted into tracks without changing frequency. Finally,
the tracks are matched one-to-one with track labels to un-
dergo refinement training with the expectation that the labels
are also of the same frequency. Since this is not the case,
we devise CTRLsparse, our adaptation of native CTRL for
sparsely supervised refinement training, as described next.

Since CTRL’s refinement module performs track-level
feature extraction, we choose to keep the input point clouds
X at the full frequency of 10Hz, maximizing the feature
extraction potential by using all available point cloud data



in a sequence. Then, sparsity is introduced at the supervi-
sion step by only using sparse labels instead of full track
labels. Since some detections will now no longer have a
corresponding label to supervise with, they can further be
omitted from the object-level feature extraction step. In other
words, we detect, track, and extract track-level features using
X , but then extract object-level features and supervise with
only sparse GT labels Yi. Such adaptation of the refinement
module supports sparse supervision while making use of all
available sensor data.

F. Semi-supervision

Semi-supervision is a standard technique to make max-
imum use of limited GT labels. Hence, we develop a
semi-supervised learning-based strategy for track-based auto-
labelling. Pseudo-labels, used to train a semi-supervised
model, can be obtained from unlabelled data in different
ways. Described below, we experiment with the methods of
interpolation, pseudo-labelling using a base detector, and a
hybrid approach that involves both.

1) Interpolation models Baseint & CTRLint: Since sparse
annotations are uniformly sampled in time, a simple method
of obtaining pseudo-labels for the unlabelled frames Xi is to
interpolate from the sparse labels Yi. To obtain interpolated
pseudo-labels Yi

int
, we first construct individual object tracks

using the sparse labels Yi of sparsity i. Then, for each sparse
object track, we interpolate the object bounding box’s centre
[centre x, centre y, centre z] and heading angle θ, while
keeping the object’s unique identifier and dimensions [length,
width, and height] the same throughout its entire track.

It is worth noting that while sequences are subsampled
with a fixed number of frames, objects may only appear
in some and not all of those sparsely sampled frames.
This results in object tracks of various lengths, including
empty tracks if the sparsity is low enough. Since different
degrees of interpolation require different minimum numbers
of data points, we adopt an adaptive approach: we perform
cubic spline interpolation if a track has at least 4 frames,
quadratic spline if 3, linear if 2, and none if only 1. Adaptive
interpolation is applied to all vehicle tracks, regardless of
their speed, acceleration, or trajectory curvature.

To obtain higher-quality interpolations with smoother tra-
jectories, we perform two operations prior to interpolating.
First, since object motions should be independent of the ego
vehicle’s movement, we convert all labels to global world
coordinates, as they are initially defined in local LiDAR
coordinates. Another numerical detail we need to address
is that GT heading angles are originally provided between
[−π,+π] rad, making it difficult to interpolate values that
wrap around when exceeding this range. Hence, we use the
standard phase unwrapping function from NumPy to mini-
mize discontinuities in heading angles before interpolating.

Finally, we combine the interpolated pseudo-labels with
sparse GT labels to supervise our interpolation-based semi-
supervision experiments. After discarding any empty tracks,
Baseint and CTRLint can be trained the same way as our full

supervision experiments, but with the newly devised set of
pseudo-labels Yi

int ∪ Yi.
2) Pseudo-label models Basessl & CTRLssl: An alterna-

tive method to obtain pseudo-labels for the unlabelled frames
Xi is to run inference with a previously trained model,
such as Baseisparse. The output detections are converted into

pseudo-labels Yi
ssl

after discarding those with a score of less
than 0.5, following [2].

Similar to the interpolation-based approach, we combine
our pseudo-labels with the sparse GT labels to form the new
set of pseudo-labels Yi

ssl ∪ Yi. Again, Baseissl can be trained
the same way as Base100%, but supervised using Yi

ssl ∪ Yi

instead of Y . Training CTRLi
ssl, however, requires pseudo-

labels to become pseudo-label tracks first. Unlike sparse GT
or interpolated labels, they do not have unique identifiers
assigned. Therefore, we run the tracker on Yi

ssl ∪ Yi to
obtain pseudo-label tracks. CTRLi

ssl can then be trained the
same way as CTRL100%, supervised with the newly generated
pseudo-label tracks.

3) Hybrid models Baseint+ssl & CTRLint+ssl: We hypoth-
esize that stationary objects can be interpolated with min-
imal error, as they do not vary significantly in speed or
trajectory shape. In contrast, dynamic objects may exhibit
more complex motion, resulting in poorer interpolations,
especially as the sparsity increases. Therefore, we explore
using interpolated labels for stationary objects, but resort
to pseudo-labels for dynamic objects. To do so, we first
need to classify object track segments as either stationary
or dynamic, then we can combine the two types of labels.
We define a track segment as a portion of an object trajectory
that is bounded by two consecutive sparse GT labels. The
next sections describe these steps in detail. An overview is
depicted in Fig. 5.

a) Stationary track segments: We determine if a track
segment is stationary using Waymo’s 0.2m/s threshold for
stationary objects. First, the average speed of a track segment
is estimated using the displacement over time of its sparse
GT endpoint bounding boxes. Then, we save all segments of
estimated speed less than 0.2m/s as stationary and the rest as
dynamic. Next, from Yi

int
, we keep only interpolated labels

that fall within the time intervals of stationary segments
(denoted int-stat) to create the new pseudo-label set Yi

int-stat
.

b) Dynamic track segments: All segments not identified
as stationary from the previous step are considered dynamic.
We now need to gather pseudo-labels from Yi

ssl
that are part

of dynamic track segments (denoted ssl-dyn) and merge them
with the interpolated labels of stationary segments. However,
due to the absence of object identities in pseudo-labels, we
cannot work with individual tracks. Instead, we gather all
pseudo-labels Yi

ssl
and discard those that overlap with the

interpolated labels from stationary segments Yi
int-stat

using a
fixed 3D Intersection over Union threshold of 0.1, resulting
in the merged set of pseudo-labels Yi

int-stat ∪ Yi
ssl-dyn

.
Finally, we combine with sparse GT labels to form the

pseudo-labels set Yi
int-stat ∪ Yi

ssl-dyn ∪ Yi. Baseiint+ssl can



Interp. GT  Tracks
𝑌!"
!"#

Base 𝑖sparse
Point Clouds 

𝑋!"
Pseudo-labels 

𝑌!"
%%&

Pseudo-label 
Tracks

Sparse GT Tracks 
𝑌!

Interpolate
Select 

Stationary

Select 
Dynamic

⊕

Refinement Training

Tracker

Pseudo-label Generation for int+ssl

Supervise

(d)

(c)
(e) (f)

(a)

(b)

Fig. 5: Constructing pseudo-label tracks for hybrid semi-supervised model training. (a) A sparse base detector infers initial
pseudo-labels. (b) All object tracks are interpolated from sparse GT labels. (c) Only interpolated labels from stationary
track segments are selected. (d) Only pseudo-labels that do not overlap with those from (c) are selected. (e) All selected
interpolated labels and pseudo-labels are combined with sparse GT labels before being fed into the tracker in (f) to generate
pseudo-label tracks.

be supervised with this set directly, but CTRLi
int+ssl needs

pseudo-label tracks obtained from the tracker.

G. Evaluation

We evaluate using Waymo’s full validation set for all
our experiments. We also use Waymo’s official evaluation
metrics but combine all non-stationary velocity categories
into one single dynamic category. The original threshold
between stationary and dynamic objects (0.2m/s) is retained.
All results report Level 2 3D average precision (AP) for
vehicle class.

IV. EXPERIMENTS

We present the main results of our training experiments
in Fig. 6. Figure 6a gives the average precision of the vehicle
class against the numbers of labelled frames per sequence,
for different training methods. Figures 6b and 6c break
down the results in terms of stationary and dynamic objects,
respectively, as defined by the standard Waymo criteria.

Our full supervision baselines, Base100% (dotted blue line)
and CTRL100% (dotted red line), indicate the maximum
performance achievable using fully labelled data, given our
models and training conditions. Since CTRL is an of-
fline auto-labelling technique that learns track-based features
while exploiting knowledge from both the past and future,
the performance of CTRL100% is significantly greater than
that of Base100%. In the following sections, we break down
the analysis of Base and CTRL experiments separately.

A. Base performance

Starting with the sparse supervision results obtained from
Baseisparse (dashed blue line), we observe that Base9sparse
achieves results surprisingly close to those of Base100%, with
only 4.5% (9 fps) labelled data. Base1sparse is less good than
Base9sparse, but nevertheless surprisingly performant, given
that it uses only 0.5% (1 fps) labelled data. Additionally, the

performance trends with stationary and dynamic vehicles are
similar, suggesting no obvious bias towards either type.

As for the semi-supervision results, Baseissl (dashed orange
line) shows that pseudo-labels improve performance relative
to Baseisparse when labelled data is very sparse (i < 5 fps), but
deteriorate as labelled data become less sparse (i ≥ 5 fps).
We suppose this is due to the pseudo-labels contributing
valuable diversity, while also containing low-quality labels
and false positives that confuse the model. Similar to the
trends in Baseisparse, there is no apparent bias regarding
stationary and dynamic vehicles. Previous work [2] showed
that training with 100% of the labelled data combined
with a large amount of pseudo-labelled data produces a
significant increase in performance compared to training on
the labelled data alone, implying that more pseudo-labels
are generally better. However, the authors did not normalize
their training times for the amount of data. Our results show
that some of the performance gains reported in [2] are likely
due to the additional training time. Moreover, we clearly
show that training with pseudo-labels can actually deteriorate
performance when the training time is normalized and the
labelled data already have sufficient diversity.

B. CTRL performance

Supervising with adaptively interpolated pseudo-labels
is entirely detrimental for low label frequencies. CTRLi

int
(dashed purple line) is worse than without interpolation for
stationary objects and worse than all methods for dynamic
objects. However, it shows promise for label frequencies
above 9 fps. CTRLi

sparse (dashed red line), on the other
hand, demonstrates good overall performance compared to
the CTRL100% baseline. This is similar to the Base sparse
supervision trends. Looking at the all-vehicle performance in
Fig. 6a, CTRLi

sparse outperforms Baseisparse for all sparsities
i ∈ {1, 2, 3, 5, 9}, and is better than Base100% and Baseissl
for i > 1. However, since stationary vehicles are dominant,
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Fig. 6: Level 2 vehicle 3D AP vs GT label frequency for different training methods. Baseint and Baseint+ssl show similar
performance trends to their corresponding CTRL experiments, however their curves are excluded to reduce clutter.

being approximately 80% of the training and validation
data, the all-vehicle performance follows the performance of
stationary vehicles and hides the much poorer performance
of dynamic vehicles. In Fig. 6c, we see that CTRLi

sparse has
much worse performance than both Baseisparse and Baseissl on
dynamic vehicles when i < 5.

The severe performance imbalance between stationary and
dynamic vehicles of CTRLsparse and CTRLint motivates our
creation of CTRLssl and CTRLint+ssl. CTRLi

ssl (dashed brown
line) overcomes such imbalance by dramatically improving
the average precision for dynamic vehicles when i < 5.
Moreover, CTRLi

ssl is the best choice for i = 1 fps. Similar
to the semi-supervision behaviour of Baseissl, training using
pseudo-labels is beneficial for lower levels of sparsity, but
eventually becomes detrimental, presumably because it in-
troduces inaccuracies and false positives. Hence, we devise
our hybrid approach CTRLint+ssl to exploit the high degree
of interpolation accuracy of stationary objects, as well as
the high dynamic performance of semi-supervised refinement
training. CTRLi

int+ssl (dashed green line) displays the highest
dynamic performance for all levels of sparsity that support
interpolation, while its stationary performance is very close
to that of CTRLi

sparse. Despite its improved dynamic detec-
tion, using pseudo-labels inevitably introduces confusion for
stationary detection, as false positives are considered ground
truth during supervision. This leads to a slight stationary
performance degradation w.r.t. CTRLi

sparse.

V. CONCLUSIONS

We find that annotating LiDAR sequences at a much
lower frequency than their collection rate is a very effective
strategy to save on human labelling costs. Even our simplest
method, training a Base model with standard augmentation,
is effective and does not bias towards stationary vehicles.
Semi-supervised learning, using pseudo-labels from a Base
model, is even more effective for the most sparsely labelled
data, but becomes detrimental as labelling becomes less
sparse. Using an offline track-based auto-labelling approach,
such as CTRL [5], can improve the performance of a Base

model beyond what is possible when it is conventionally
trained with fully labelled sequences.

After modifying native CTRL to support training on sparse
annotations, our CTRLsparse adaptation produces the best
detection results for stationary objects and sparsity i >
2 fps. However, such performance comes at the detriment
of its detection capabilities for dynamic objects, being even
worse than the Base model for sparsity i ≤ 3 fps. In
contrast, CTRLssl and CTRLint+ssl achieve balanced detection
performance between stationary and dynamic objects. Using
a combination of pseudo-labels and sparse human-generated
GT labels to supervise the refinement module, CTRLssl
not only achieves balanced stationary-dynamic performance,
but also surpasses CTRLsparse in dynamic object detection.
Moreover, it outperforms a Base model trained with fully
labelled data, at all levels of sparsity. At 1 fps, it is the
superior approach in all evaluation categories. For the other
levels of very sparse labels, we propose CTRLint+ssl. Em-
ploying adaptive interpolation for stationary track segments
and pseudo-labels for dynamic tracks, CTRLint+ssl achieves
the best dynamic detection performance and significantly im-
proves on CTRLssl’s stationary object detection performance
at all levels of sparsity. We note that the performance of
CTRLint+ssl with stationary objects is slightly below that of
CTRLsparse for sparsities i ≥ 3 fps. We hypothesize that
this is due to the severe performance bias of CTRLsparse
in favour of stationary objects. We suppose that the model
learns to avoid conflicts between detecting both stationary
and dynamic vehicles by not detecting the dynamic ones.
However, since we require a balanced detection performance,
we deem CTRLint+ssl to be superior to CTRLsparse. For
annotation frequencies greater than or equal to 9 fps, one can
consider using CTRLsparse or simply adaptive interpolation.

We speculate that it might be possible to further increase
performance by iterating some of our methods, such as
using the Basessl model as the base model for CTRLint+ssl
or using the pseudo-labels produced by CTRLint+ssl to train
a new Base model. However, given a finite amount of ground



truth, there are likely to be diminishing returns and possibly
unforeseen interactions that reduce performance.

ACKNOWLEDGMENT

This work was partially funded by the Natural Sciences
and Engineering Research Council (NSERC) of Canada.

REFERENCES

[1] Holger Caesar, Varun Bankiti, et al. “nuScenes: A
Multimodal Dataset for Autonomous Driving”. In:
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR). 2020.

[2] Benjamin Caine, Rebecca Roelofs, Vijay Vasude-
van, Jiquan Ngiam, Yuning Chai, Zhifeng Chen, and
Jonathon Shlens. Pseudo-labeling for Scalable 3D
Object Detection. 2021. arXiv: 2103.02093.

[3] Ming-Fang Chang, John Lambert, et al. “Argoverse:
3D Tracking and Forecasting with Rich Maps”. In:
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR). 2019.

[4] Xieyuanli Chen, Benedikt Mersch, Lucas Nunes, Ro-
drigo Marcuzzi, Ignacio Vizzo, Jens Behley, and Cyrill
Stachniss. “Automatic Labeling to Generate Training
Data for Online LiDAR-based Moving Object Seg-
mentation”. In: IEEE Robotics and Automation Letters
7.3 (2022), pp. 6107–6114.

[5] Lue Fan, Yuxue Yang, Yiming Mao, Feng Wang, Yun-
tao Chen, Naiyan Wang, and Zhaoxiang Zhang. “Once
Detected, Never Lost: Surpassing Human Performance
in Offline LiDAR based 3D Object Detection”. In:
IEEE/CVF International Conference on Computer Vi-
sion (ICCV). 2023, pp. 19820–19829.

[6] Chengjie Huang, Vahdat Abdelzad, Sean Sedwards,
and Krzysztof Czarnecki. “SOAP: Cross-sensor Do-
main Adaptation for 3D Object Detection Using
Stationary Object Aggregation Pseudo-labelling”. In:
IEEE/CVF Winter Conf. on Applications of Computer
Vision (WACV). 2024.

[7] Tao Ma, Xuemeng Yang, et al. “DetZero: Rethink-
ing Offboard 3D Object Detection with Long-term
Sequential Point Clouds”. In: IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV). 2023,
pp. 6713–6724.

[8] Ziqi Pang, Zhichao Li, and Naiyan Wang. “Model-
free Vehicle Tracking and State Estimation in Point
Cloud Sequences”. In: 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS).
IEEE. 2021, pp. 8075–8082.

[9] Abhishek Patil, Srikanth Malla, Haiming Gang, and
Yi-Ting Chen. “The H3D Dataset for Full-Surround
3D Multi-Object Detection and Tracking in Crowded
Urban Scenes”. In: 2019 International Conference on
Robotics and Automation (ICRA). 2019, pp. 9552–
9557.

[10] Matthew Pitropov, Danson Evan Garcia, Jason Re-
bello, Michael Smart, Carlos Wang, Krzysztof Czar-
necki, and Steven Waslander. “Canadian Adverse
Driving Conditions dataset”. In: The International
Journal of Robotics Research 40.4-5 (2021), pp. 681–
690.

[11] Charles R. Qi, Yin Zhou, Mahyar Najibi, Pei Sun,
Khoa Vo, Boyang Deng, and Dragomir Anguelov.
“Offboard 3D Object Detection From Point Cloud
Sequences”. In: IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR). 2021,
pp. 6134–6144.

[12] Zengyi Qin, Jinglu Wang, and Yan Lu. “Weakly
Supervised 3D Object Detection from Point Clouds”.
In: Proceedings of the 28th ACM International Con-
ference on Multimedia. 2020, pp. 4144–4152.

[13] Pei Sun, Henrik Kretzschmar, et al. “Scalability in
Perception for Autonomous Driving: Waymo Open
Dataset”. In: IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). 2020.

[14] OpenPCDet Development Team. OpenPCDet: An
Open-source Toolbox for 3D Object Detection from
Point Clouds. https://github.com/open-
mmlab/OpenPCDet. 2020.

[15] Sean Walsh, Jason Ku, Alex D Pon, and Steven L
Waslander. “Leveraging Temporal Data for Automatic
Labelling of Static Vehicles”. In: 17th Conference
on Computer and Robot Vision (CRV). IEEE. 2020,
pp. 134–141.

[16] Qitai Wang, Yuntao Chen, Ziqi Pang, Naiyan Wang,
and Zhaoxiang Zhang. Immortal Tracker: Tracklet
Never Dies. 2021. arXiv: 2111.13672.

[17] Benjamin Wilson, William Qi, et al. “Argoverse 2:
Next Generation Datasets for Self-Driving Perception
and Forecasting”. In: 35th Conference on Neural In-
formation Processing Systems Datasets and Bench-
marks Track (Round 2). 2021.

[18] Pengchuan Xiao, Zhenlei Shao, et al. “PandaSet: Ad-
vanced Sensor Suite Dataset for Autonomous Driv-
ing”. In: IEEE International Intelligent Transportation
Systems Conference (ITSC). IEEE. 2021, pp. 3095–
3101.

[19] Anqi Joyce Yang, Sergio Casas, et al. “LabelFormer:
Object Trajectory Refinement for Offboard Perception
from LiDAR Point Clouds”. In: Proceedings of The
7th Conference on Robot Learning. Vol. 229. Proceed-
ings of Machine Learning Research. PMLR, 2023,
pp. 3364–3383.

[20] Bin Yang, Min Bai, Ming Liang, Wenyuan Zeng,
and Raquel Urtasun. Auto4D: Learning to Label 4D
Objects from Sequential Point Clouds. 2021. arXiv:
2101.06586.

[21] Sergey Zakharov, Wadim Kehl, Arjun Bhargava, and
Adrien Gaidon. “Autolabeling 3D Objects with Dif-
ferentiable Rendering of SDF Shape Priors”. In:
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR). 2020, pp. 12224–12233.

https://arxiv.org/abs/2103.02093
https://github.com/open-mmlab/OpenPCDet
https://github.com/open-mmlab/OpenPCDet
https://arxiv.org/abs/2111.13672
https://arxiv.org/abs/2101.06586

	Introduction
	Related Work
	Track-based auto-labelling
	Datasets with sequential data

	Methods
	Dataset and sequence subsampling
	Track-based auto-labelling pipeline
	Notation
	Full supervision baselines: Base100% & CTRL100%
	Sparse supervision models: Basesparse & CTRLsparse
	Semi-supervision
	Interpolation models Baseint & CTRLint
	Pseudo-label models Basessl & CTRLssl
	Hybrid models Baseint+ssl & CTRLint+ssl

	Evaluation

	Experiments
	Base performance
	CTRL performance

	Conclusions

