
Science of Computer Programming 208 (2021) 102665
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

Original software publication

Umple: Model-driven development for open source and

education

Timothy C. Lethbridge ∗, Andrew Forward, Omar Badreddin,
Dusan Brestovansky, Miguel Garzon, Hamoud Aljamaan, Sultan Eid,
Ahmed Husseini Orabi, Mahmoud Husseini Orabi, Vahdat Abdelzad,
Opeyemi Adesina, Aliaa Alghamdi, Abdulaziz Algablan, Amid Zakariapour

University of Ottawa, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 August 2020
Received in revised form 14 April 2021
Accepted 15 April 2021
Available online 21 April 2021

Keywords:
Model-driven development
Code generation
Compiler

Umple is an open-source software modeling tool and compiler. It incorporates textual
language constructs for UML modeling, including associations and state machines. It
includes traits, aspects, and mixins for separation of concerns. It supports embedding
methods written in many object-oriented languages, enabling it to generate complete
multilingual systems. It provides comprehensive analysis of models and generates many
kinds of diagrams, some of which can be edited to update the Umple code. Umple runs
on the command line, in a web browser or in integrated development environments. It is
designed to help developers reduce code volume, while they develop in an agile, model-
driven manner. Umple is also targeted at educational users where students are motivated
by its ability to generate real systems from their software models.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).
* Corresponding author.
E-mail address: timothy.lethbridge@uottawa.ca (T.C. Lethbridge).

https://doi.org/10.1016/j.scico.2021.102665
0167-6423/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.scico.2021.102665
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2021.102665&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:timothy.lethbridge@uottawa.ca
https://doi.org/10.1016/j.scico.2021.102665
http://creativecommons.org/licenses/by/4.0/

T.C. Lethbridge, A. Forward, O. Badreddin et al. Science of Computer Programming 208 (2021) 102665
Software metadata

(executable) Software metadata description

Current software version 1.30.2
Permanent link to executables of this version Github Jar for command line interface (CLI) use:

https://github .com /umple /umple /releases /latest
GUI: https://try.umple .org and via Docker at http://docker.umple .org

Legal Software License MIT
Computing platform / Operating System MacOS, Linux, or Windows with Java Virtual Machine (JVM) version 8 and higher).

Alternatively runs in a Docker container on any Docker-supported platform.
Installation requirements & dependencies No required dependencies other than either JVM or Docker. Runs as a

Command-Line-Interface (CLI) tool with the JVM, or through a web browser with
Docker. Other options are available to run in Eclipse or Microsoft Visual Studio Code.

Link to user manual https://manual .umple .org
Support email for questions umple -help @googlegroups .com but also questions may be asked on Stack Overflow,

with the Umple tag.

Code metadata

Code metadata description

Current Code version 1.30.2
Permanent link to code / repository used of this code version https://github .com /ScienceofComputerProgramming /SCICO -D -20 -00148
Legal Code License MIT
Code Versioning system used Git
Software Code Language used Umple (i.e. self-compiling) with embedded Java for the compiler. PHP and Javascript

for the GUI
Compilation requirements, Operating environments & dependencies Compilation operating environment: MacOS, Linux or Windows

Dependencies for compilation: Ant (or Gradle), Java 8+, and the previous version of
Umple (as Umple is self-compiling).
Additional dependencies for testing generated code as part of the build: Ruby and
PHP 7+

Link to developer documentation / manual http://architecture .umple .org
Support email for questions umple -dev @googlegroups .com

1. Introduction

In this Original Software Publication paper, we present Umple [22,21], an open-source technology that blends high-
level abstractions, widely referred to as models, with widely-used programming languages. By generating code for the
abstractions, it allows creation of software with many-fewer lines of code than would otherwise be possible.

Umple consists primarily of:

• A compiler that processes Umple code and generates code in one of several programming languages, as well as dia-
grams and other artifacts. The input Umple code can contain modeling constructs such as UML associations and state
machines; code written in other programming languages, and constructs that allow separation of concerns. The com-
piler provides extensive analysis of the Umple code and generates many warnings and error messages. The compiler
can work on systems with thousands of files, as demonstrated by the fact that Umple is compiled in itself.

• A web-based front-end called UmpleOnline [31] that allows editing of Umple code either textually, or rendered as
diagrams, and enables interaction with the compiler running as a server.

Umple was developed to target two audiences: The first is open-source developers who overwhelmingly work with textual
languages but can benefit from Umple features to improve quality and reduce code volume. The second audience is educa-
tors who want to teach modeling in UML, but can improve motivation and engagement if the students can build complete
systems with their models.

Umple can be run on the command line, in Eclipse, or in a web environment called UmpleOnline [31].
Umple is an important technology for several reasons: It is the only modeling technology that is written in itself, and

that can generate and analyse large-scale systems. It is also one of a very small number of feature-rich modeling and code-
generation technologies that is completely open source. Finally it has been designed to be easily integrated into open source
toolchains, without dependencies on any technology other than the Java Virtual Machine.

2. Problems and background

The main problems Umple addresses are:
2

https://github.com/umple/umple/releases/latest
https://try.umple.org
http://docker.umple.org
https://manual.umple.org
mailto:umple-help@googlegroups.com
https://github.com/ScienceofComputerProgramming/SCICO-D-20-00148
http://architecture.umple.org
mailto:umple-dev@googlegroups.com

T.C. Lethbridge, A. Forward, O. Badreddin et al. Science of Computer Programming 208 (2021) 102665
• Making it possible to develop software simultaneously with a textual and visual representation of high-level abstrac-
tions, so as to gain the advantages of either representation.

• Reducing the volume of code that needs to be written due to generation of code from high-level abstractions.

For decades, developers of all types have organized their software primarily in terms of sets of textual files containing
source code. At the same time, they have often drawn diagrams representing certain views of their software so as to design
it at a high level of abstraction, to explain it to others, and to understand its design. For the most part, these two types of
representation have remained separate, with the source code being the gold master, and the diagrams being primarily found
in documentation that is often outdated [26].

There are many reasons for the primacy of textual code: Generations of developers are comfortable with it, there are
numerous editors available, it can be commented easily, and version-management tools work well with it. Diagrams can
also be a bother to lay out in an informative way, even with automated algorithms, whereas indenting of text is generally
easy. Text also melds well with modern approaches to software engineering, particularly agile approaches. At the same time,
the two-dimensional nature of diagrams can be very helpful in ensuring quality and communicating. If the diagrams can be
edited, with textual code generated, then the diagrams can make redundant a lot of error-prone typing of boiler-plate code.

Some people have promoted round-trip engineering [29], wherein code is reverse-engineered to diagrams, which are then
edited and converted back into source code. However, this tends not to work well in practice, according to our experience
and those of developers with whom we have worked. This alternating between diagrammatic and textual programs is really
the opposite of what we have been trying to achieve with Umple. The biggest problems with round-trip engineering are
these: Firstly, the model is no longer the single master to be edited, leading developers to have to mentally keep track of
both model diagrams and generated code. Secondly the developers tend to modify the generated code in inconsistent ways,
resulting in the technology not being able to regenerate the diagrams.

We consider all representations of software to be models, although models that capture the highest levels of abstraction
are the more powerful ones. Examples of such abstractions include state machines and UML associations. The notion of
model-driven development (MDD) envisions generating software from these high-level abstractions, avoiding the need to
write repetitive boiler-plate code.

In 2006, we set out to develop a technology that would provide the best of both worlds: We wanted to achieve the
editability, documentability, familiarity, version-tracking, and agility of textual code. At the same time, we wanted to in-
corporate high-level abstractions (modeling) directly into that code, allowing the code to be directly manipulated by a
diagrammatic editor simultaneously as it is edited by a text editor. The resulting software is called Umple.

Umple is explicitly not a single new programming language; instead, it consists of a set of features that extend multiple
existing programming languages. The extensions add various kinds of abstractions (state machines, associations, mixins,
traits and so on) consistently to those languages, while allowing use of these features both diagrammatically and textually.
Umple enables people to develop the abstract structure or behavior of software quickly, and understand the implications of
the so-called models, and to generate functioning systems from them.

The modeling language UML, with several types of diagrams, was developed starting in the mid 1990’s, and there are
many UML tools. The most recent generation of these tools includes Papyrus [18], and Astah [7]. However, research has
shown that UML is not widely used in practice, at least for actual generation of systems [27]. We studied over 20 such tools
as used by professors and students, [4,5] and found them to have numerous weaknesses, including being overly complex,
not generating good quality code, and not giving good feedback about models. The Umple project seeks to overcome these
limitations.

3. Software framework

3.1. Software architecture

The core component of Umple is the compiler. An Umple program is processed by the Umple compiler to generate various
outputs including diagrams as well as complete systems in C++, Java, PHP, and other target languages. The compiler is a
Jar file and runs under the JVM. The compiler itself is generated from Java code, which is in turn generated from code
written in Umple. Thus, the Umple compiler is self-hosted (written in itself). The compiler can be run on the command line,
embedded in IDEs, or used in server mode in the Umple graphical user interface, as described below.

The second component of Umple is the UmpleOnline graphical user interface for editing Umple either diagrammatically
or textually. This is a website that uses PHP to intercept requests from the front-end, which contains extensive JavaScript
code. The PHP backend establishes socket connections to the Umple compiler (as in the last paragraph), which runs contin-
ually as an internal server, providing compilation microservices. UmpleOnline is live on the web [31] and is also distributed
for local use via Docker.

3.2. Software functionality

The generated code is designed to be readable to allow for inspection if necessary, but it is expected that for the most
part it will not be read. In other words, normal practice would be to compile Umple directly to an executable system, using
the ‘target’ language only as a hidden intermediate form.
3

T.C. Lethbridge, A. Forward, O. Badreddin et al. Science of Computer Programming 208 (2021) 102665
The Umple language is designed to look and feel like a C-family language, in that it uses curly brackets for blocks, and
has a data typing scheme compatible with such languages. An Umple program includes the following top-level entities, with
those marked with an asterisk also being able to be specified internally to classes.

• Classes and interfaces.
• Separation of concerns mechanisms: Traits [1] that allow classes to be built from parts; aspects *, to inject code into

generated or user-specified methods; and mixsets * [23], a capability to structure the system using groups of named
mixins to enable feature-oriented or product-line development.

• Use statements to incorporate multiple files or mixsets, and require statements to specify dependencies among mixsets
or files.

• Associations [9], the standard UML constructs. *
• State machines [10], with unlimited nesting, concurrent regions, guards, entry actions, exit actions and concurrent do-

activities (as per UML). *
• Enumerations. *

Classes and traits can include the following, in addition to those items marked with an asterisk above:

• Generalization statements (using the keyword ‘isA’) to specify the use of traits, interfaces or super-classes.
• Attributes as in UML, subject to constraints and various stereotypes controlling features such as uniqueness or im-

mutability.
• Methods, whose bodies can have preconditions and postconditions specified in Boolean logic, as well as test code, and

can have bodies in multiple programming languages (Java, C++, PHP) so they can be used to generate systems in
multiple target languages.

• Constraints, which specify class invariants in Boolean logic, and which can refer to attributes and associations.
• Generation templates, describing patterns of textual output [16].
• Dependency declarations for external Umple code or the use of libraries in target languages.
• Directives specifying various class properties (and hence controlling what code is generated) such as immutability, being

a singleton, and distributability.

Umple also makes extensive use of mixins [23] that allow additional constructs to be added to previously-defined classes,
traits, state machines and other constructs. All of Umple’s separation-of-concerns constructs (traits, mixins, mixsets, aspects)
synergistically work together.

The core of the language is hence a textually-represented subset of UML But, as indicated above, Umple goes beyond
UML in many ways. Its facilities for traits, aspects, mixins, and mixsets [23] depend on its textual nature, and could not be
easily represented in a purely diagrammatic language.

A tool is available to reverse engineer (umplify [12,24]) systems to Umple, to reduce code volume and allow visualization.
Programs developed in Umple need to be compiled on the user’s local machine, even if the public or Docker-based

UmpleOnline platforms are used. There have been many requests to be able to execute programs on UmpleOnline servers,
but this poses a security challenge. There is, however, a capability that allows a user using one keystroke to take a program
in UmpleOnline, transfer it to their local computer, and compile it there, ready for running.

Users of Umple are supported by an online user manual [32] that has over 440 examples, each of which can be dynam-
ically loaded into UmpleOnline. UmpleOnline also has many examples to help the user to learn Umple.

4. Related literature

There is extensive literature on the research and technologies that underpin Umple, mostly written by the seven PhD
students and three masters students who have completed their theses focusing on Umple, or by the students whose thesis is
still underway. The present paper is designed to bring it all together into a single citable paper covering the software itself
as a whole; all the contributing graduate students are co-authors. Here we briefly mention only a subset of the literature,
due to space limitations.

Early work focused on representing and generating good quality code for UML associations [9] and attributes [8]. Later
work focused on state machines [10] (including queuing and pooling), tracing [6,41], traits [1], formal methods (Alloy and
nuXmv) generation [3], concurrency [14], component-based modeling [15], text generation [16,17], distribution, and mixsets
for product lines [23].

There is also literature about reverse engineering to Umple (umplification) [12,24] and the use of Umple in modeling
education [19,25].

Umple is not the only textual modeling technology with full executability. TextUML [2], USE [13], SDL [28] and the many
so-called formal methods languages are also well-known modeling technologies with a textual form. Executable UML is
designed specifically to allow executability. These tools tend, however, to be limited to a certain IDE such as Eclipse, to be
narrow in focus (e.g. USE focuses on associations and constraints), to not blend with traditional programming languages, to
4

T.C. Lethbridge, A. Forward, O. Badreddin et al. Science of Computer Programming 208 (2021) 102665
be complex to use, and/or to not be free and open source. Umple has been designed to blend some of the best aspects of
these technologies, and to overcome many of their key limitations.

5. Implementation and empirical results

5.1. Implementation details

The following gives details of Umple’s design. More details, including dynamically generated diagrams, can be found
online [33].

As discussed in Section 3.1, Umple has several distinct components, the most important being the compiler and the
web-based user interface (UmpleOnline) [31]. There is also an Eclipse plugin and an extension for Microsoft Visual Studio
Code.

The Umple compiler is written in Umple; its first version was in Java, but it was umplified [24] as soon as the first
version was complete. Umple incorporates its own parsing engine (replacing Antlr in the original version), and its own text
generation templating feature [17] for code generation.

The compiler follows a fairly standard compiler architecture. It is deployed as Java JAR file. The grammar [35] is parsed
when the system is built, to create the parsing engine for instances of Umple code. The same grammar file is also used to
generate documentation in the user manual, ensuring that the documentation is always 100% accurate.

The Umple compiler parses a set of Umple files (with suffix ‘.ump’) as input and transforms them into an internal abstract
syntax tree (AST), whose nodes and arcs are the instances of the classes and associations in Umple’s metamodel [39].

Analysis is performed during and immediately after parsing, and numerous errors and warnings can be raised as a
result. Each of these is listed in a key file called en.error [37], and they include both syntax errors and semantic errors
(e.g., creating a cycle in the inheritance hierarchy). Documentation, with executable examples, is provided describing each
of the errors and warnings [38]. The analysis phase results in some post-processing of the AST, converting it into an Abstract
Syntax Graph (ASG).

Following creation of the ASG, the compiler invokes one of many user-selected generators that transform the ASG into
outputs including diagrams of various types (class diagrams, state machines, entity-relationship diagrams, and others), code
in various target languages (Java, C++, PHP, Ruby, nuXmv, and Alloy), as well as various other outputs such as diagrams, doc-
umentation, sample state machine execution sequences, and metrics. Selection of the generator can be performed through
UmpleOnline, by specifying the generator in the Umple code itself, or using a command-line argument.

Both the Umple parser and the Umple textual generation technology (UmpleTL) are native to Umple and can be used by
other programs written in Umple.

The compiler can also accept both a program and a set of edit operations that originate from a diagram editor.
In addition to accepting input via standard-input, the compiler can also operate as a server. In this case the compiler

accepts compilation commands and returns results through a socket. This mechanism is used by UmpleOnline to sustain the
high throughput demanded by its peak usage (thousands of compilation requests an hour).

The second Umple component is its graphical user interface. This takes the form of a website, but can be run locally
on any computer using Docker [34]. UmpleOnline enables simultaneous editing of text and diagrams as well as generation
and display of any of the compiler’s many outputs. It supports several diagramming plugins; for example, for class diagrams
there is a native diagramming tool, but it also supports a GraphViz generator and a joint.js editor.

The front-end of UmpleOnline is written using Javascript and JQuery. This makes web-service calls to a PHP backend.
The PHP backend routes commands to a running Umple server. Although many people run UmpleOnline locally on their
machines using Docker, the main UmpleOnline website [31] hosted in the cloud has proved capable of handling over 150,000
commands in some 24-hour periods. These peaks tend to occur when very large classes of students at several universities
are using Umple for assignments and projects with tight deadlines. UmpleOnline hosts over 200,000 user sessions per year,
and executes over 2 million commands per year. This does not include personal usage of the downloaded Jar, or usage in
Docker or Eclipse; these forms of usage are not tracked.

5.2. Development process, testing and build system

The Umple codebase is hosted on Github. Umple follows standard agile open-source best practices with a few modifica-
tions to account for model-driven development using itself reflectively.

New developers wishing to contribute to Umple are asked to follow the instructions for developer setup in the Umple
Wiki, and are then trained on small enhancements or bug fixes before they may contribute significant changes. Each pro-
posed change must be documented in an issue, where discussion occurs about any proposed design. Developers create a
branch for each issue, and when they have solved the issue they create a pull request for the set of commits that solve the
issue (or part of it). Each pull request for the compiler or generators must include enhancements to the automated tests.
5

T.C. Lethbridge, A. Forward, O. Badreddin et al. Science of Computer Programming 208 (2021) 102665
A full build involves the following:

• Compiling the Umple code (as changed), including code for the various generators and the parser, and then generating
a new compiler.

• Compiling the code again with the newly-generated compiler (the compiler hence performs a self-test).
• Running tests in several categories: a) Tests of parsing all Umple constructs, including generating any error messages

and constructing the internal abstract syntax tree; b) tests for generating outputs (e.g., code or diagrams) that appear as
expected; c) tests that generated code executes as expected in languages such as Java and PHP; d) tests that failures of
generated code can be debugged as expected; e) tests of that all 450 examples in the user manual compile as expected.
Overall, over 6000 tests are run.

The developer is expected to achieve a zero-failure build before submitting any pull request. All branch commits and pull
requests are tested on Travis and Appveyor in the MacOS, Linux and Windows environments before merging. Pull requests
must also undergo a code inspection. Once all these checks pass, a new version of Umple is created, and becomes immedi-
ately available for use. Stable builds are also released a couple of times a year.

Umple has been developed by over 60 students. In addition to the graduate students (who are co-authors), 60 under-
graduate students from many universities participated in their capstone projects through the UCOSP program [30,20]. The
undergraduate students are listed in the Acknowledgments section.

5.3. Empirical results

A variety of empirical studies have been performed with Umple. We summarize them here.
In a paper dating back to 2011 [25], we showed that students found Umple useful in the classroom, and that it im-

proved students’ comprehension of modeling and their grades: Final exam grades for questions regarding drawing UML
class diagrams increased from 76.4% to 83.6%.

Badreddin and Lethbridge [11] performed a study comparing the comprehensibility of systems written in Umple (as
text), UML (as diagrams), and in Java. Systems in Umple were as easy to understand as the same system in UML diagrams,
and much easier to understand than the same systems written in Java.

Between 2016 and 2017 we surveyed 125 professors [4] and 117 students [5] in many countries regarding their use of
software modeling tools including Umple. Umple scored well, as compared to other tools, with respect to features such as
simplicity and support for code generation.

In 2017, Leibel, Badreddin, and Heldal [40] compared the use of Papyrus [18] and Umple in student modeling projects.
They report, “There is a clear endorsement for Umple . . . regarding its impact on the project, with 65% agreeing that the
tool affected their project positively and about 20% disagreeing.” They then say, “65% agree and 19% disagree that Umple is
easy to learn. . . . 39% agreeing and 48 % disagreeing that Papyrus is easy to learn.”

6. Illustrative examples

We give two examples, each with a sample of Umple code and some of the generated output. In both cases, the Umple
keywords are in red and raw target language code (here Java) that will be transferred to the generated code without change
(or as-is), is in dark blue.

The first example corresponds to the class diagram shown in Fig. 1, which is generated as the text is edited. The code
for this can be found in the Umple user manual in the ‘Hello World’ page [36] where the user can interact with it. If the
user clicks ‘Generate Java’, 425 lines of Java appear, 325 of which would need to be written by hand if Umple were not used
(the remaining 100 are generated to facilitate debugging of the original Umple code, as opposed to the generated code).

There are three classes, starting on lines 1, 7, and 10. Line 16 illustrates Umple’s mixin capability, whereby multiple class
definitions are combined. Lines 8 and 11 show how generalization is specified in Umple. Lines 13-15 show the representa-
tion of a UML association. The code generated from associations properly manages referential integrity (i.e., Students know
their Mentor, and Mentors know their Students).

The second example shows a UML state machine for a canal, which is one of the live examples in UmpleOnline [31].
The State machine name lockState is shown on line 7. State names are in blue-green, and event names (which generate
methods to be called by hardware or user interface) are in brown. Arrows (−>) indicate which event leads to which
resulting state. Guards, controlling whether or not a transition will be taken are shown in square brackets. The entry
keyword specifies actions to be taken on entering a state, and the after keyword specifies a event to be triggered after a
time delay in milliseconds. It can be seen from this example that many features of Umple can be interwoven.

A total of 483 lines of Java are generated from these 50 lines of Umple.
Fig. 2 shows a state table, generated from the Umple code. This table provides a way for developers to visualize and

manually validate their model, and is one of a variety of potential outputs of UmpleOnline. Fig. 3 shows the UmpleOnline
user interface enabling editing the model, with part of the generated code visible at the bottom, and the generated state
diagram on the right.
6

Fig. 1. Class diagram generated from the Student-Mentor example using the GraphViz generator.

7. Conclusions

Umple is a software tool designed to improve the productivity of software engineers and the quality of their products. It
is unique in several ways: It is the only open-source software modeling tool written in itself; it embraces synergies between
textual notations, diagrams, and other representations of systems; it is cross-platform and can be used without dependence
on any particular integrated development platform (IDE); it embeds code in multiple target languages and has multiple
inter-operating separation-of-concerns capabilities such as traits, mixins, mixsets, and aspects. Umple also has many other
features such as comprehensive analysis of models.

Umple is targeted to agile open-source developers and software engineering education, but can be used for development
of any type of software. For developers, it is designed to work with their best practices such as test-driven development,
change management, and continuous integration. For professors and students, it enables learning of software modeling,
facilitated by an extensive manual and examples, and motivated by the ability to create fully functional systems of any size.

Umple is used in education in universities in North America, Europe, Australia and New Zealand. We are also aware of
its use to develop a variety of closed-source industrial software in such domains as statistical analysis, scheduling, contact
management, and learning management.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.
T.C. Lethbridge, A. Forward, O. Badreddin et al. Science of Computer Programming 208 (2021) 102665
7

T.C. Lethbridge, A. Forward, O. Badreddin et al. Science of Computer Programming 208 (2021) 102665

Fig. 2. Part of the state table generated by Umple from the Canal example. Rows are states; cells are events that cause a state transition from that state;
columns are resulting states. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
8

T.C. Lethbridge, A. Forward, O. Badreddin et al. Science of Computer Programming 208 (2021) 102665
Fig. 3. High-level view of the UmpleOnline user interface showing the state machine example, with the diagram generated by GraphViz, and some generated
code.

Acknowledgements

The authors of this paper are the lead professor and graduate students who have worked on the Umple compiler since its
inception. However, contributions have also been received from numerous others, including masters student Julian Solano,
the following 4th year students through the UCOSP program [30,20] (listed in Chronological order of contribution): Joshua
Horacsek, Joel Hobson, Alvina Lee, Jordan Johns, Sonya Adams, James Zhao, Adam Dzialoszynski, Luna Lu, Song Bae Choi,
Thomas Morrison, Sacha Bagasan, Andrew Paugh, Stuart Erskine, Russell Staughton, Christopher Hogan, Geoffrey Guest,
Gabriel Blais Bourget, Robin Jastrzebski, Quinlan Jung, Blakeley Quebec Desloges, Tianyuan Chu, Fiodar Kazhamiaka, Greg
Hysen, Jean-Christophe Charbonneau, Kenan Kigunda, Adriaan Cody Schuffelen, Marc Antoine Gosselin-Lavigne, Pedro Au-
gusto Vincente, Ellen Arteca, Alexi Turcotte, Karin Ng, Mark Galloway, Alexander Ringeri, Eric Telmer, Charles Wang, Chan
Chun Kit, Nabil Maadarani, John Zweip, Kevin Brightwell, Warren Marivel, Ashley Merman, Xinxin Kou, Aymen Ben Rkhis,
Curtis Meerkerk, Adam Kereliuk, Matthew Fritze, Michael Mkicik, Victoria Lacroix, Morgan Redshaw, Matthew Rodusek,
Shikib Mehri, Marc de Niverville, Alex Hochheiden, Noah Murad, Katharine Cavers, Jackie Lang, Adam Bolding Jones, Chang
Ding, Joshua McManus, Balaji Venkatesh, Runqing Zhang, Finn Hackett, Daniel Mitchell, Richard Hugessen, Bowei (Bernard)
Yuan, Gloria Law, Yiran Shu, Evgeniya Vashkevich, and Paul Wang.

These 4th year students have attended the Universities of Ottawa, Guelph, British Columbia, Regina, Saskatchewan, Sher-
brooke, Waterloo, New Brunswick, Alberta, Toronto, Windsor, Lethbridge and Illinois, as well as Laurentian, Bishops, Simon
Fraser, Dalhousie, Western, Wilfrid Laurier, Brock, Carnegie Mellon and Cornel Universities plus the Massachusetts Institute
of Technology.
9

T.C. Lethbridge, A. Forward, O. Badreddin et al. Science of Computer Programming 208 (2021) 102665
Several postdocs, visiting professors, employees and interns have also contributed to Umple: Ali Fatolahi, Antonio Re-
sende, Julie Filion, Jesus Zambrano, Tiago Nascimento, Craig Bryan, Jason Canto, Zainab Al Showely, Firas Jribi and Jingyi
Pan.

Funding for the travel of the undergraduate students was provided by Google and Facebook through the UCOSP and Face-
book Open Academy programs. Funding for the graduate students was from NSERC under grants 453224, 483509, 569913,
and 657301 as well as from the Ontario Research Fund under grant RE-05-044.

References

[1] V. Abdelzad, T.C. Lethbridge, Promoting traits into model-driven development, Softw. Syst. Model. 16 (4) (2017) 997–1017. Springer.
[2] Abstratt, TextUML, http://abstratt .github .io /textuml /readme .html, visited January 2021.
[3] O. Adesina, T.C. Lethbridge, S. Somé, Optimizing hierarchical, concurrent state machines in Umple for model checking, in: 16th Workshop on Model

Driven Engineering, Verification and Validation (MoDeVVa), Models Companion Volume, Munich, September, IEEE, 2019, pp. 523–531.
[4] L.T.W. Agner, T.C. Lethbridge, A survey of tool use in modeling education, in: 2017 ACM/IEEE 20th International Conference on Model Driven Engineer-

ing Languages and Systems (MODELS), IEEE, 2017, September, pp. 303–311.
[5] L.T.W. Agner, T.C. Lethbridge, I.W. Soares, Student experience with software modeling tools, Softw. Syst. Model. 18 (2019) 3025–3047. Springer.
[6] H. Aljamaan, T.C. Lethbridge, O. Badreddin, G. Guest, A. Forward, Specifying trace directives for UML attributes and state machines, in: 2nd International

Conference on Model-Driven Engineering and Software Development (MODELSWARD), January, IEEE, 2014, pp. 79–86.
[7] Astah, Visualize your ideas: UML and Data Modeling and diagramming tools for the enterprise, https://astah .net, visited January 2021.
[8] O. Badreddin, A. Forward, T.C. Lethbridge, Exploring a model-oriented and executable syntax for UML attributes, in: Software Engineering Research,

Management and Applications, Springer, 2014, pp. 33–53.
[9] O. Badreddin, A. Forward, T.C. Lethbridge, Improving code generation for associations: enforcing multiplicity constraints and ensuring referential in-

tegrity, in: Software Engineering Research, Management and Applications, Springer, 2014, pp. 129–149.
[10] O. Badreddin, T.C. Lethbridge, A. Forward, M. Elaasar, H. Aljamaan, M.A. Garzon, Enhanced code generation from UML composite state machines, in:

2014 2nd International Conference on Model-Driven Engineering and Software Development (MODELSWARD), IEEE, 2014, January, pp. 235–245.
[11] O. Badreddin, T.C. Lethbridge, Combining experiments and grounded theory to evaluate a research prototype: lessons from the Umple model-oriented

programming technology, in: First International Workshop on User Evaluation for Software Engineering Researchers, IEEE, 2012, June, pp. 1–4.
[12] M.A. Garzón, T.C. Lethbridge, H. Aljamaan, O. Badreddin, Reverse engineering of object-oriented code into Umple using an incremental and rule-based

approach, in: 24th Annual International Conference on Computer Science and Software Engineering, ACM, 2014, November, pp. 91–105.
[13] M. Gogolla, F. Büttner, M. Richters, USE: a UML-based specification environment for validating UML and OCL, Sci. Comput. Program. 69 (2007) 27–34.

Elsevier.
[14] M. Husseini Orabi, A. Husseini Orabi, T.C. Lethbridge, Concurrent Programming Using Umple, MODELSWARD, 2018, pp. 575–585. SCITEPRESS.
[15] M. Husseini Orabi, A. Husseini Orabi, T.C. Lethbridge, Component-Based Modeling in Umple, MODELSWARD, 2018, pp. 247–255. SCITEPRESS.
[16] M. Husseini Orabi, A. Husseini Orabi, T. Lethbridge, Umple as a Template Language (Umple-TL), in: Proceedings of the 7th International Conference on

Model-Driven Engineering and Software Development, SCITEPRESS, 2019, February, pp. 96–104.
[17] M. Husseini Orabi, A. Husseini Orabi, T.C. Lethbridge, Umple-TL: a model-oriented, dependency-free text emission tool, Commun. Comput. Inf. Sci. 1161

(2020) 127–155. Springer.
[18] A. Lanusse, Y. Tanguy, H. Espinoza, C. Mraidha, S. Gerard, P. Tessier, F. Terrier, Papyrus UML: an open source toolset for MDA, in: Proc. of the Fifth

European Conference on Model-Driven Architecture Foundations and Applications (ECMDA-FA 2009), 2009, June, pp. 1–4.
[19] T.C. Lethbridge, Teaching modeling using Umple: principles for the development of an effective tool, in: 2014 IEEE 27th Conference on Software

Engineering Education and Training (CSEE&T), IEEE, 2014, April, pp. 23–28.
[20] T.C. Lethbridge, Capstone software engineering students can develop a high-quality complex system: a case study with Umple, in: Canadian Engineering

Education Conference, 2019, https://doi .org /10 .24908 /pceea .vi0 .13730.
[21] T.C. Lethbridge, A. Algablan, Umple: an executable UML-based technology for agile model-driven development, in: IGI Global, Advancements in Model-

Driven Architecture in Software Engineering, IGI Global, 2020, pp. 1–25.
[22] T.C. Lethbridge, V. Abdelzad, M. Husseini Orabi, A. Husseini Orabi, O. Adesina, Merging modeling and programming using Umple, in: International

Symposium on Leveraging Applications of Formal Methods (Isola), Springer, 2016, pp. 187–197.
[23] T.C. Lethbridge, A. Algablan, Using Umple to synergistically process features, variants, UML models and classic code, in: International Symposium on

Leveraging Applications of Formal Methods, Springer, 2018, November, pp. 69–88.
[24] T.C. Lethbridge, A. Forward, O. Badreddin, Umplification: refactoring to incrementally add abstraction to a program, in: 2010 17th Working Conference

on Reverse Engineering, IEEE, 2010, October, pp. 220–224.
[25] T.C. Lethbridge, G. Mussbacher, A. Forward, O. Badreddin, Teaching UML using Umple: applying model-oriented programming in the classroom, in:

2011 24th IEEE-CS Conference on Software Engineering Education and Training (CSEE&T), IEEE, 2011, May, pp. 421–428.
[26] T.C. Lethbridge, J. Singer, A. Forward, How software engineers use documentation: the state of the practice, IEEE Softw. 20 (6) (2003) 35–39.
[27] M. Petre, UML in practice, in: 2013 35th International Conference on Software Engineering (ICSE), IEEE, 2013, May, pp. 722–731.
[28] A. Rockstrom, R. Saracco, SDL-CCITT specification and description language, IEEE Trans. Commun. 30 (6) (1982) 1310–1318.
[29] S. Sendall, J. Küster, Taming model round-trip engineering, in: Workshop on Best Practices for Model-Driven Software Development, 2004, pp. 1–23.
[30] E. Stroulia, et al., Teaching distributed software engineering with UCOSP: the undergraduate capstone open-source project, in: 2011 Community Build-

ing Workshop on Collaborative Teaching of Globally Distributed Software Development, ACM, 2011, pp. 20–25.
[31] UmpleOnline, https://try.umple .org, visited January, 2021.
[32] Umple User Manual, https://manual .umple .org, visited January 2021.
[33] Umple Architecture, http://architecture .umple .org, visited January 2021.
[34] Umple DockerHub, http://docker.umple .org, visited January 2021.
[35] Umple Grammar, http://grammar.umple .org, visited January 2021.
[36] Umple Hello World Examples, https://manual .umple .org ?HelloWorldExamples .html, visited January 2021.
[37] Umple Master Error File, http://errors .umple .org, visited January 2021.
[38] Umple Messages, http://manual .umple .org ?Umplemessages .html, visited January 2021.
[39] Umple Metamodel, http://metamodel .umple .org, visited January 2021.
[40] G. Liebel, O. Badreddin, R. Heldal, Model driven software engineering in education: a multi-case study on perception of tools and UML, in: 30th

Conference on Software Engineering Education and Training (CSEE&T), Savannah, GA, Ipp, 2017, pp. 124–133.
[41] H. Aljamaan, T.C. Lethbridge, MOTL: a textual language for trace specification of, in: State Machines and Associations, 25th Annual International

Conference on Computer Science and Software Engineering (Cascon), ACM, 2015, pp. 101–110.
10

http://refhub.elsevier.com/S0167-6423(21)00058-7/bibC4CA4238A0B923820DCC509A6F75849Bs1
http://abstratt.github.io/textuml/readme.html
http://refhub.elsevier.com/S0167-6423(21)00058-7/bibECCBC87E4B5CE2FE28308FD9F2A7BAF3s1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bibECCBC87E4B5CE2FE28308FD9F2A7BAF3s1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bibA87FF679A2F3E71D9181A67B7542122Cs1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bibA87FF679A2F3E71D9181A67B7542122Cs1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bibE4DA3B7FBBCE2345D7772B0674A318D5s1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bib1679091C5A880FAF6FB5E6087EB1B2DCs1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bib1679091C5A880FAF6FB5E6087EB1B2DCs1
https://astah.net
http://refhub.elsevier.com/S0167-6423(21)00058-7/bibC9F0F895FB98AB9159F51FD0297E236Ds1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bibC9F0F895FB98AB9159F51FD0297E236Ds1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bib45C48CCE2E2D7FBDEA1AFC51C7C6AD26s1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bib45C48CCE2E2D7FBDEA1AFC51C7C6AD26s1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bibD3D9446802A44259755D38E6D163E820s1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bibD3D9446802A44259755D38E6D163E820s1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bib6512BD43D9CAA6E02C990B0A82652DCAs1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bib6512BD43D9CAA6E02C990B0A82652DCAs1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bibC20AD4D76FE97759AA27A0C99BFF6710s1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bibC20AD4D76FE97759AA27A0C99BFF6710s1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bibC51CE410C124A10E0DB5E4B97FC2AF39s1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bibC51CE410C124A10E0DB5E4B97FC2AF39s1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bibAAB3238922BCC25A6F606EB525FFDC56s1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bib9BF31C7FF062936A96D3C8BD1F8F2FF3s1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bibC74D97B01EAE257E44AA9D5BADE97BAFs1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bibC74D97B01EAE257E44AA9D5BADE97BAFs1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bib70EFDF2EC9B086079795C442636B55FBs1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bib70EFDF2EC9B086079795C442636B55FBs1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bib6F4922F45568161A8CDF4AD2299F6D23s1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bib6F4922F45568161A8CDF4AD2299F6D23s1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bib1F0E3DAD99908345F7439F8FFABDFFC4s1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bib1F0E3DAD99908345F7439F8FFABDFFC4s1
https://doi.org/10.24908/pceea.vi0.13730
http://refhub.elsevier.com/S0167-6423(21)00058-7/bib3C59DC048E8850243BE8079A5C74D079s1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bib3C59DC048E8850243BE8079A5C74D079s1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bibB6D767D2F8ED5D21A44B0E5886680CB9s1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bibB6D767D2F8ED5D21A44B0E5886680CB9s1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bib37693CFC748049E45D87B8C7D8B9AACDs1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bib37693CFC748049E45D87B8C7D8B9AACDs1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bib1FF1DE774005F8DA13F42943881C655Fs1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bib1FF1DE774005F8DA13F42943881C655Fs1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bib8E296A067A37563370DED05F5A3BF3ECs1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bib8E296A067A37563370DED05F5A3BF3ECs1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bib4E732CED3463D06DE0CA9A15B6153677s1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bib02E74F10E0327AD868D138F2B4FDD6F0s1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bib33E75FF09DD601BBE69F351039152189s1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bib6EA9AB1BAA0EFB9E19094440C317E21Bs1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bib34173CB38F07F89DDBEBC2AC9128303Fs1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bib34173CB38F07F89DDBEBC2AC9128303Fs1
https://try.umple.org
https://manual.umple.org
http://architecture.umple.org
http://docker.umple.org
http://grammar.umple.org
https://manual.umple.org?HelloWorldExamples.html
http://errors.umple.org
http://manual.umple.org?Umplemessages.html
http://metamodel.umple.org
http://refhub.elsevier.com/S0167-6423(21)00058-7/bibD645920E395FEDAD7BBBED0ECA3FE2E0s1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bibD645920E395FEDAD7BBBED0ECA3FE2E0s1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bib3416A75F4CEA9109507CACD8E2F2AEFCs1
http://refhub.elsevier.com/S0167-6423(21)00058-7/bib3416A75F4CEA9109507CACD8E2F2AEFCs1

	Umple: Model-driven development for open source and education
	1 Introduction
	2 Problems and background
	3 Software framework
	3.1 Software architecture
	3.2 Software functionality

	4 Related literature
	5 Implementation and empirical results
	5.1 Implementation details
	5.2 Development process, testing and build system
	5.3 Empirical results

	6 Illustrative examples
	7 Conclusions
	Declaration of competing interest
	Acknowledgements
	References

