
Non-divergent Imitation for Verification of
Complex Learned Controllers

Vahdat Abdelzad∗, Jaeyoung Lee∗, Sean Sedwards∗, Soheil Soltani∗ and Krzysztof Czarnecki
University of Waterloo, Canada

{vahdat.abdelzad, jaeyoung.lee, sean.sedwards, soheil.soltani, krzysztof.czarnecki}@uwaterloo.ca

Abstract—We consider the problem of verifying complex
learned controllers using distillation. In contrast to previous
work, we require that the distilled model maintains behavioural
fidelity with an oracle, defining the notion of non-divergent
path length (NPL) as a metric. We demonstrate that current
distillation approaches with proven accuracy bounds do not
have high expected NPL and can be out-performed by naive
behavioural cloning. We thus propose a distillation algorithm
that typically gives greater expected NPL, improved sample
efficiency, and more compact models. We prove properties of
NPL maximization and demonstrate the performance of our
algorithm on deep Q-network controllers for three standard
learning environments that have been used in this context: Pong,
CartPole and MountainCar.

Index Terms—imitation learning, behavioural fidelity, verifi-
cation, distillation, reinforcement learning, DQN, decision tree

I. INTRODUCTION

Machine learning can solve complex sequential decision-
making tasks, but learned controllers are often opaque and
difficult to formally verify. If the system is sufficiently simple
and it is possible to constrain its architecture and training, it
may be feasible to directly verify a learned controller [1–3].
In this work, however, we consider the more common case
that the controller already exists and is not amenable to
direct formal analysis. We thus pursue the idea of distilling
a complex deterministic controller—an oracle—into a data
structure that is more tractable to verification. In particular,
we consider the process of distilling such an oracle into a
decision tree (DT), as recently proposed in [4], but treating
the oracle as a black box. A symbolic rollout of the execution
of a DT can be represented as a set of simple constraints,
which can then be verified w.r.t. linear temporal logic (LTL)
using bounded model checking (BMC) [5].

This approach raises the issue of fidelity, i.e., the ability
of the distilled model to achieve similar expected rewards
(performance) and to make similar decisions (accuracy) to the
original controller. The “Viper” distillation algorithm of [4]
inherits the proven fidelity bounds of the “Dagger” imita-
tion learning algorithm [6], however these bounds are only
asymptotic w.r.t. execution path length. By its nature, BMC

∗Contributed equally.
The authors gratefully acknowledge the support of the Natural Sciences and
Engineering Research Council of Canada (NSERC) DND Supplement and the
Japanese Science and Technology agency (JST) ERATO project JPMJER1603:
HASUO Metamathematics for Systems Design.

0 20 40 60 80 100
CartPole execution step

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Av
er

ag
e

er
ro

r r
at

e
up

 to
 st

ep

Dagger
Viper
Behavioural cloning
Bounded beh. cloning

Fig. 1: Average error rate (1−accuracy) w.r.t. the oracle up to
given execution step, for competing distillation approaches ap-
plied to the CartPole problem. Averages over 10 distillations.
10000 rollouts used to estimate errors.

checks properties of finite length, which are typically short
for reasons of computability. We thus find that Dagger’s and
Viper’s fidelity are not adequate for verification.

Using a deep Q-network (DQN) controller for the CartPole
problem [7] as an example, Fig. 1 illustrates the motivation
of our work by plotting the error rate (1− accuracy) up to a
given execution step for DTs produced by Dagger, Viper, naive
behavioural cloning and behavioural cloning with bounded
executions, all using the same total amount of training data. We
see that Dagger and Viper have much higher error rates than
behavioural cloning, with significant peaks before 20 steps,
noting that a distilled model of CartPole is verified for only 10
steps in [4]. Bounded behavioural cloning, in this case where
the DT is trained on states from executions limited to 40 steps,
performs better than naive behavioural cloning. The intuition is
that accuracy is improved by focusing on the states that matter,
however accuracy is not a sufficient metric for verification.
LTL properties typically apply to sequences of states generated
by the execution of a system from a distribution of initial
states, while accuracy is a metric of fidelity between states and
actions, irrespective of the sequence. Hence, it is possible to
have high accuracy on a sequence of states that is not in a valid
order. In Section III, we therefore define the notion of non-
divergent path length (NPL), which can be seen as the number
of steps in an execution sequence before taking a different

978-0-7381-3366-9/21/$31.00 ©2021 IEEE

20
21

 In
te

rn
at

io
na

l J
oi

nt
 C

on
fe

re
nc

e
on

 N
eu

ra
l N

et
w

or
ks

 (I
JC

N
N

) |
 9

78
-1

-6
65

4-
39

00
-8

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IJC
N

N
52

38
7.

20
21

.9
53

34
10

Authorized licensed use limited to: University of Waterloo. Downloaded on August 04,2024 at 18:40:20 UTC from IEEE Xplore. Restrictions apply.

action to a reference sequence. After such a divergence,
the sequence of states cannot be guaranteed to follow the
reference, even if the subsequent actions match.

We thus propose statistics over NPL as suitable metrics to
judge the behavioural fidelity of a distilled model w.r.t. an or-
acle. We then devise an imitation learning algorithm that uses
NPL to increase the behavioural fidelity of distillation. Our
approach is therefore in contrast to standard imitation learning,
which typically expects, allows, and mitigates divergence from
the oracle. Our algorithm tries to avoid divergence in the first
place.

The paper proceeds as follows. We first briefly summarize
related work in Section II. In Section III, we define notation
and formulate our metric (NPL) and the problem we address.
In Section IV, we give theoretical insights about NPL maxi-
mization and prove related properties. We describe our non-
divergent imitation (NDI) algorithm in Section V, and give
further theoretical insights about how it works. In Section VI,
we give the results of distillation experiments performed on
DQN controllers for standard learning environments. Finally,
we summarize our contribution in Section VII.

II. RELATED WORK

Imitation Learning: Also known as learning from demon-
stration, imitation learning attempts to learn a model that
mimics the behaviour of an oracle. The learned models can
be complex parameterized models, such as deep neural net-
works [6, 8–10], interpretable models, such as DTs [4, 11, 12],
or synthetic programs [12]. In this work, we are interested in
approaches where the learned models have a data structure that
is tractable to verification. The classes of imitation learning
relevant to our work are behavioural cloning [8] and direct
policy optimization [4, 6, 8], where the data distributions come
from rollouts by an oracle and learned models, respectively.
Dagger [6] is the standard direct policy optimizer. Viper [4]
is a grey-box algorithm that extends Dagger by introducing
selective data sampling based on Q-values. See [11] for a
further extension using a mixture of expert trees.

Dagger-style imitation was applied as a projection operation
in a meta-algorithm Propel [12], which alternates re-training
the oracle and projecting it into a DT or program space. Viper
was used to construct a shield for a monitoring system [13].
While the purpose of a shield is to monitor and protect the
deployed system online, the philosophy of our work is to verify
the controller, before its deployment.

Verification of Deep Q-networks: Much current work fo-
cuses on verifying controllers in the form of deep Q-networks
(DQN). This can be divided into direct verification [1–3, 14]
and verification of distilled models [4, 11–13, 15, 16]. We
adopt the latter perspective. The authors of [4, 11–13, 15]
have demonstrated the use of the Z3 SMT solver [17] to verify
their distilled DTs. The authors of Viper [4] show examples
of stability- and robustness-checking of distilled DTs, finding
that the latter is faster than directly checking the robustness
of the DQN oracle with Reluplex [1]. However, despite titles
that sometimes imply the contrary, these works do not actually

verify the DQN and do not consider the behavioural fidelity of
the DT w.r.t. the DQN. Without such consideration, the DQN
cannot be confidently deployed, because the verification of the
distilled DT will not imply the verification of the DQN.

III. PROBLEM FORMULATION

We consider a Markov decision process (MDP) (S,A, d,P)
for a state space S, a finite action space A, an initial state
distribution d ∈ Dist(S), and a state transition function
P : S×A→ Dist(S) describing the distribution of the next
state given the current state and chosen action. Dist(S) denotes
the set of all distributions over S. For clarity, our theory below
assumes that S is countable, but can easily be extended to
MDPs where S is Euclidean space.

We focus on episodic tasks where an underlying MDP
generates a finite path τ := s1a1s2a2 · · · s|τ |a|τ | s.t. |τ | = T ,
s1 ∼ d(·), and sn+1 ∼ P(sn, an)(·) for all n = 1, · · · , T − 1;
|τ | denoted the length of τ ; T ∈ N is the terminal index that is
bounded with probability 1 and determined by either reaching
a terminal state or timeout. We say τ is complete if |τ | = T .
Given a path τ , we adopt the notation τ1:t := s1a1 · · · stat and
τt:t := stat for t ≤ |τ |, and τ1:t := τ for t > |τ |. Similarly,
s1:t := s1 · · · st and a1:t := a1 · · · at for t ≤ |τ |, etc.

A policy π in our work refers to a mapping from S to A.
τπ denotes a complete path generated by π. Given a policy π
and a path τ , the following notation will be used for t ∈ N:

π(s1:t) = a1:t ⇐⇒ π(sn) = an ∀n ∈ {1, 2, · · · ,min(t, |τ |)}.

Note: π(s1:t) = a1:t is reduced to π(s1:|τ |) = a1:|τ | if t > |τ |.
The non-divergent path length (NPL) ł ≡ ł(π|τ) of a policy

π given a path τ is defined as:

ł(π|τ) := max
{
t ∈ N0 | t = 0 or π(s1:t) = a1:t

}
=
∑|τ |
t=1 1

[
π(s1:t) = a1:t

]
, (1)

where 1[·] is the indicator function. Intuitively, the NPL ł(π|τ)
is a measure of how long the given policy π can generate the
same sequence of actions from the initial state as the ones
taken in the path τ . If ł < |τ |, then the NPL ł indicates

π(s1:ł) = a1:ł but π(sł+1) 6= ał+1.

Hereafter, we use ł for an NPL whenever there is no confusion
and unless specified, τ denotes a complete path τπ

∗
generated

by an oracle π∗, with a slight abuse of notation.
Given an oracle π∗ to be verified and a class of verifiable

policies Π, our objective is to find a policy π̂ such that

π̂ ∈ arg max
π∈Π

E
[
ł(π|τ)

]
(2)

where the expectation E[·] is taken w.r.t. all complete paths τ
generated by π∗. Note that the higher E

[
ł(π|τ)

]
, the more

accurate imitation is expected on τ1:ł in the sequential man-
ner, which is desirable for verifying the oracle π∗. On the
other hand, the 0-1 loss in standard imitation learning (e.g.,
behavioural cloning and Dagger) does not have this property.
Thus, reduction of the 0-1 loss results in better accuracy on

Authorized licensed use limited to: University of Waterloo. Downloaded on August 04,2024 at 18:40:20 UTC from IEEE Xplore. Restrictions apply.

the entire space, but not necessarily in a sequential manner
on τ1:ł. Also note that the maximum NPL |τ | along a path τ
is achievable at π∗ that generates τ (see the maximality in
Theorem 1 below). However, in practice, the oracle π∗ is not in
the constrained policy class Π hence π̂ 6= π∗ and the maximal
achievable NPL ł(π|τ) is less than |τ |.

The framework (2) and our algorithm can be applied to any
type of oracle π∗ and any verifiable policy class Π. In our
experiments, however, we consider a DQN policy π∗ and a
class of DT policies Π.

IV. PROPERTIES OF NPL MAXIMIZATION

In this section, we establish the properties of the NPL (1)
and its maximization (2), which serves as theoretical basis of
our proposed algorithm. The highlight of this section is that
(2) is equivalent to the problem that our algorithm tries to
solve. We start our discussion by showing the properties of
the NPL and associated problems.

Theorem 1. The NPL satisfies the following, for any path τ
and any policies π and π′.

1) ł(π|τπ) = |τπ| (maximality);

2) ł(π|τ1:t1) ≤ ł(π|τ1:t2) for t1 ≤ t2 (monotonicity);

3) E[ł(π|τπ′)] = E[ł(π′|τπ)] (equivalence).

Proof. The first and second parts are obvious by (1) and

π(st) = at for any t ∈ {1, 2, · · · , |τ |} if τ = τπ,∑t1
t=11

[
π(s1:t) = a1:t

]
≤
∑t2
t=1 1

[
π(s1:t) = a1:t

]
if t1 ≤ t2.

For the proof of equivalence, see Appendix A.

By equivalence in Theorem 1, the problem (2) of maximiz-
ing the expected NPL can be transformed into a form similar
to direct policy optimization:

π̂ ∈ arg max
π∈Π

E
[
ł(π∗|τπ)

]
(3)

which now depends on the complete path τπ to be optimized.
Maximizing (2) and (3) can be performed in a similar manner
to standard imitation learning approaches (e.g., behavioural
cloning, Dagger and Viper), where the paths are generated by
the oracle π∗ and the learned policy, respectively. However,
(2) and (3) maximize the expected NPL while those imitation
learning approaches minimize the pointwise 0-1 loss. It is
worth noting that regardless of which policy (the oracle
π∗ or a learned policy) is employed to generate paths, the
solution π̂ remains to be the same by the equivalence between
the problems (2) and (3). In our proposed algorithm, we
adopt generating paths using the oracle π∗ that is simple and
produces reusable data over iterations, hence we consider the
behavioural-cloning-style maximization (2) rather than (3).

The next equivalent problem, which is more relevant to our
proposed algorithm, is defined w.r.t. the following surrogate
NPL ` which we also call the pathwise similarity `:

`(π|τ) :=
∑|τ |
t=1 1

[
π(st) = at

]
. (4)

While the condition “π(s1:t) = a1:t” for the NPL (1) is path-
dependent, “π(st) = at” in (4) is not; E[`(π|τ)] corresponds
to the conventional 0-1 similarity. Here, the surrogate NPL `
is an upper-bound of or equivalent to the NPL ł, as shown in
the next theorem.

Theorem 2. For any path τ and any policy π,

1) ł(π|τ) ≤ `(π|τ) ≤ |τ | (boundedness);

2) `(π|τ1:t1) ≤ `(π|τ1:t2) for t1 ≤ t2 (monotonicity);

3) ł(π|τ1:t) = `(π|τ1:t) = t for t ≤ ł(π|τ) (equivalence).

Proof. The boundedness is obvious by (1), (4), and

1
[
π(s1:t) = a1:t

]
≤ 1

[
π(st) = at

]
≤ 1.

For the monotonicity, note that for t1 ≤ t2,∑t1
t=1 1

[
π(st) = at

]
≤
∑t2
t=1 1

[
π(st) = at

]
.

Lastly, π(sn) = an for all n ≤ ł(π|τ). Thus, for t ≤ ł(π|τ),∑t
n=1 1[π(s1:n) = a1:n]︸ ︷︷ ︸

ł(π|τ1:t)

=
∑t
n=1 1[π(sn) = an]︸ ︷︷ ︸

`(π|τ1:t)

=
∑t
n=1 1︸ ︷︷ ︸
t

which directly proves the equivalence, the last part.

By the equivalence in Theorem 2, the primal problem (2)
is equivalent to:

π̂ ∈ arg max
π∈Π

E
[
`(π | τ1:ł(π|τ))

]
(5)

w.r.t. the pathwise similarity `. Now, we can see that solving
(2) is equivalent to finding the optimal path length, the NPL ł.
Once ł is given for each path τ , the maximization (5) falls
into the usual problem of minimizing the 0-1 loss on the data
constructed from each roll-out τ1:ł but only up to its optimal
path length ł.

The challenge in solving (5) here is that ł depends on the
policy π we attempt to optimize. However, we can estimate it
as discussed with our proposed algorithm in the next section.
From Theorem 2 (see also monotonicity in Theorem 1), we
observe that an estimate l̂ of ł holds the following properties
(note beforehand that ł ≡ ł(π|τ) = `(π|τ1:ł) is the objective
to be maximized).

1) Consistency:

{
l̂ ≤ ł =⇒ `(π|τ1:l̂) ≤ ł
ł ≤ l̂ =⇒ ł ≤ `(π|τ1:l̂)

2) The closer l̂ is to ł, the closer the associated NPL ł(π|τ1:l̂)
and its surrogate `(π|τ1:l̂) are to ł (due to monotonicity).

3) Equivalence: l̂ ≤ ł =⇒ ł(π|τ1:l̂) = `(π|τ1:l̂) = l̂.

V. NON-DIVERGENT IMITATION (NDI)

In this section, we present our Non-Divergent Imitation
(NDI) algorithm (Algorithm 1), which generates 1 ≤ i ≤ imax

verifiable policies πi and returns the one with the greatest ex-
pected NPL. The core idea is to iteratively accumulate training
data from the non-divergent prefixes of paths generated by a
succession of improving models. In contrast to other imitation

Authorized licensed use limited to: University of Waterloo. Downloaded on August 04,2024 at 18:40:20 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Non-Divergent Imitation (NDI)
Input:
k : the number of paths per iteration
imax : the maximum number of iterations
π0 ≡ π∗ : the oracle policy
Output: A verifiable policy with high expected NPL

1 T ← ∅ /* multiset of paths */

2 for i = 1, . . . , imax do
/* initialize k new paths */

3 repeat k times
4 sample s ∼ d(·) /* initial dist. */

5 a← π∗(s)

6 T ← T ∪ {sa}

7 T ′ ← ∅ /* multiset of paths */

8 D ← ∅ /* multiset of state-acts. */

9 foreach τ = s1a1 · · · stat ∈ T do
10 τ ′ ← ExteND(τ, πi−1)

11 D ← D ∪
{
τ ′n:n | 1 ≤ n ≤ |τ ′|

}
12 if |τ ′| > t then
13 T ′ ← T ′ ∪ {τ ′}

14 else
15 T ′ ← T ′ ∪ {τ}

16 πi ← TrainVerifiablePolicy(D)

17 T ← T ′

18 return SelectBest({πi | 1 ≤ i ≤ imax})

learning algorithms, the prefixes have the same distribution as
prefixes of paths generated by the oracle π∗.

Line 1 initializes the empty multiset T used to contain all
the generated paths.1 Paths are not necessarily unique, so a
multiset is required to accurately represent the distribution.
Lines 3 to 6 add the initial state-actions of k new paths
to T . Lines 7 and 8 initialize the multisets T ′—used to
update T—and D that stores the state-actions used to train
the verifiable policy in line 16. We deliberately do not specify
the nature of the subroutine TrainVerifiablePolicy, but note that
our implementation trains a decision tree using the standard
method provided by Scikit-Learn [18]. As in the case of paths,
D is a multiset to accurately represent the distribution of
state-actions. In line 10, a maximal non-divergent path τ ′ is
calculated by the ExteND subroutine (Algorithm 2, described
below) w.r.t. each path τ in T and the previous policy πi−1.
Here, maximal means a path of length min(ł(πi−1|τ) + 1, T).
The states of each extended path are added to the multiset
D in line 11. Note that due to the uncertainties introduced
by sampling and by training the verifiable policy, τ ′ may
be shorter than τ . Hence, in lines 12 to 15, the longer of
τ and τ ′ is added to the multiset T ′, which becomes the new

1A set that allows multiple instances of elements.

Algorithm 2: Subroutine ExteND
Input:
π : the current policy
τ = s1a1 · · · stat : a path
Output: Maximal non-divergent prefix / extension of τ

1 τ ′ ← ∅ /* an empty path */

2 for n = 1, 2, 3, . . . do
3 if n > t then
4 sample sn ∼ P(sn−1, an−1)(·)
5 an ← π∗(sn)

6 else
7 snan ← τn:n

8 τ ′ ← τ ′snan
9 if π(sn) 6= an ∨ n is terminal index then

10 break

11 return τ ′

T in line 17. T therefore grows monotonically. Finally, the
policy with the greatest expected NPL is chosen by subroutine
SelectBest in line 18.

SelectBest: We provide an algorithm for SelectBest in
Appendix B and simply comment here that it refines the set of
generated policies by iteratively estimating the expected NPL
of each policy and keeping a subset of the policies with the
highest estimates. The expected NPL is estimated by averaging
the NPL of rolled out paths, using approximately the same
total number of rollouts per iteration. Hence, as the set of
policies is reduced, the accuracy of the estimates increases.

ExteND: (Algorithm 2) returns a maximal non-divergent
path w.r.t. input path τ and policy π, where the maximal
length is defined as min(ł(πi−1|τ) + 1, T). By construction,
τ is a path generated by the oracle, but its maximality w.r.t.
an arbitrary policy π is initially unknown. Hence, the loop
in line 2 to line 10 iterates from the initial state-action of τ
until a disagreement or a terminal index is found (line 9).
The output path τ ′ is constructed by copying state-actions
from τ in line 8. In the case that the end of τ is reached
without the discovery of a disagreement or a terminal index,
new state-actions are sampled from the oracle in lines 4 and 5.
In the case that the loop terminates with a disagreement, the
disagreeing state-action is included in the returned path. This
ensures that Algorithm 1 continues to explore.

A. Theoretical Aspects of NDI

The main idea of NDI lies in the equivalence between (2)
and (5). That is, NDI at each iteration i > 2 approximately
solves:

πi ∈ arg max
π∈Π

E
[
`(π | τ1:łi−1+1)

]
(6)

where łi−1 := ł(πi−1|τ) denotes the NPL of the last pol-
icy πi−1. This iterative scheme optimistically estimates the
NPL of πi by “łi−1 + 1” from the last policy πi−1. It expects

Authorized licensed use limited to: University of Waterloo. Downloaded on August 04,2024 at 18:40:20 UTC from IEEE Xplore. Restrictions apply.

that the process (6) with slightly more data added due to “+1”
will increase the NPL of πi over πi−1. This heuristic is also
from the fact that maximizing (6) leads us to a higher expected
NPL, thanks to the equivalence in Theorem 2, under a properly
chosen path length that is in our case łi−1 + 1.

To analyze better our NDI, consider a fixed point π• of (6)
(assumed to exist) with its NPL ł• := ł(π•|τ). Being a fixed
point of (6) means that π• satisfies:

π• ∈ arg max
π∈Π

E
[
`(π | τ1:ł(π|τ)+1)

]
. (7)

Obviously, (7) is very similar to the problem (5), but is not the
same, due to the existence of the “+1” in the length. If the path
length were given by łi−1, rather than łi−1 + 1, then the fixed
point π• would be the same as the solution π̂. In this case, we
might also expect a better convergence. However, we observe
that a variant of NDI that has no “+1” heuristic produces
DTs with expected NPL much lower than Algorithm 1. We
hypothesize that this is caused by not sufficiently increasing
the amount of data in D. In contrast, Algorithm 1 increases
the paths in D by the minimal amount, i.e., “+1” state-action,
which gives the following sub-optimality of π•:

1) If ł• is long enough, then ł• ≈ ł• + 1, by which and (5)
we can expect π• ≈ π̂. That is, the fixed point π• of (6)
can be still close to the solution π̂ when ł• � 1.

2) ł•+1 is the closest upper-bound of ł•. I.e., (7) minimally
violates the equivalence between the NPL ł and its
surrogate ` in Theorem 2. Without such equivalence,
minimizing (5) is not necessarily equal to optimizing the
expected NPL (2) in general.

Intuitively, the “+1” heuristic minimally increases the amount
of data to allow the NPL of each path to increase, while
preserving the existing optimality as much as possible and
not forgetting what it has already learned. We leave further
theoretical analysis to future work.

VI. EXPERIMENTS

In this section, we describe experiments that we conducted
to demonstrate the performance of our NDI algorithm (Algo-
rithm 1). We evaluate our method on DQN controllers for the
CartPole [19], MountainCar [20], and Pong [21] reinforcement
learning environments. For CartPole and Pong we used pre-
trained DQNs provided by Keras-RL [22] and Viper,2 respec-
tively. We trained our own DQN for MountainCar, whose
structure is loosely based on that of the DQN for CartPole.

CartPole and MountainCar are continuous space dynamical
systems and their DQNs map Euclidean space to discrete
actions. Pong’s DQN maps images to actions, so we employ
the abstraction used by Viper.2 To train our verifiable policies,
we use the standard CART method [23] in scikit-learn [18] to
train decision trees using the Gini impurity measure.

Having previously established that other imitation learn-
ing algorithms used for verification are less effective than
behavioural cloning (BC) (see, e.g., Fig. 1), we use BC as

2https://github.com/obastani/viper

the baseline to judge the performance of Algorithm 1 w.r.t.
expected NPL, model size, and training data efficiency. Each
iteration of Algorithm 1 constructs a multiset of generated
paths T , a multiset of state-actions D, and a policy trained on
D. For comparison, we train another policy using |D| state-
actions from complete paths generated by the oracle. These
state-actions are not selected at random, but in the sequence
that they are generated, up to |D|. We thus compare two sets
of models: one trained on state-actions from non-divergent
prefixes (denoted NDI in the figures) and one trained on a
corresponding number of state-actions from complete paths
(denoted BC in the figures). Note that the number of state-
actions in the paths of T is what we record as the amount of
generated data, which is greater than or equal to the amount
of training data |D|.

To simplify comparisons, as far as possible we use the
same parameters for all experiments and environments. In
particular, we set k = 25 paths per iteration and imax = 40
maximum iterations for all experiments, relying on default
settings in scikit-learn for training decision trees. An exception
to this is that we set the maximum tree depth to 12 for Pong
and CartPole, but set it to 5 for MountainCar. The value 12
is inherited from the implementation of Viper,2 but this is
excessive for MountainCar, which has a simpler controller.

For each environment, we performed 50 independent ex-
periments, each comprising an execution of Algorithm 1 and
a matched iterative procedure for behavioural cloning, as
described above. In the following figures, we plot per-iteration
summary statistics w.r.t. the 50 experiments. In most cases we
plot the mean and quartiles, but in the case of MountainCar
and Pong, the distributions of expected NPL for behavioural
cloning are bimodal and skewed, making the upper quartile
unstable or uninformative. In these cases, we therefore include
the standard deviation as a more meaningful statistic.

A. MountainCar
The results for MountainCar are presented in Fig. 2.
In Fig. 2a we plot the expected NPL for models produced by

NDI and BC. NDI clearly outperforms BC and its superiority
increases with the number of iterations.

In Fig. 2b we plot the number of nodes in models produced
at each iteration. As the performance w.r.t. NPL of the NDI
models increase, as seen in Fig. 2a, the number of nodes
increases, but the superiority of NDI over BC is once again
clear. The number of nodes in models produced by BC initially
increases much quicker and continues to rise, despite BC’s
performance w.r.t. NPL consistently decreasing.

In Fig. 2c, for each model we plot expected NPL against
the amount of generated data. In contrast to NDI, we assume
the amount of generated data for BC is the same as the
amount of training data, since there is no selection. Despite
this advantage, we see that NDI requires significantly less data
to achieve its results than BC.

B. CartPole
The CartPole problem has similarities with MountainCar,

but its dynamics are more divergent near the initial states.

Authorized licensed use limited to: University of Waterloo. Downloaded on August 04,2024 at 18:40:20 UTC from IEEE Xplore. Restrictions apply.

0 5 10 15 20 25 30 35 40
Iteration

15

20

25

30

35

Ex
pe

ct
ed

 N
PL std dev

quartiles

NDI mean
quartiles
BC mean

(a) Expected NPL of models

0 5 10 15 20 25 30 35 40
Iteration

30

35

40

45

50

55

Nu
m

be
r o

f n
od

es

BC mean
quartiles
NDI mean
quartiles

(b) Number of nodes in DTs

104 105 106

Generated data (mean # state-actions)

15

20

25

30

35

Ex
pe

ct
ed

 N
PL

std dev

NDI mean
quartiles
BC mean
quartiles

(c) Expected NPL vs generated data

Fig. 2: Results for MountainCar. Mean and quartiles w.r.t. 50 experiments. Expected NPL estimated with 10000 rollouts.

0 5 10 15 20 25 30 35 40
Iteration

6

8

10

12

14

Ex
pe

ct
ed

 N
PL

NDI mean
quartiles
BC mean
quartiles

(a) Expected NPL of models

250 500 750 1000 1250 1500 1750 2000
Number of nodes (mean)

6

8

10

12

14

Ex
pe

ct
ed

 N
PL

NDI mean
quartiles
BC mean
quartiles

(b) Expected NPL vs # of nodes in DTs

104 105 106

Generated data (mean # state-actions)

6

8

10

12

14

Ex
pe

ct
ed

 N
PL

NDI mean
quartiles
BC mean
quartiles

(c) Expected NPL vs generated data

Fig. 3: Results for CartPole. Mean and quartiles w.r.t. 50 experiments. Expected NPL estimated with 10000 rollouts.

0 5 10 15 20 25 30 35 40
Iteration

0

5

10

15

20

25

Ex
pe

ct
ed

 N
PL

std dev

NDI mean
quartiles
BC mean
quartiles

(a) Expected NPL of models

0 5 10 15 20 25 30 35 40
Iteration

0

100

200

300

400

500

600

700

Nu
m

be
r o

f n
od

es

BC mean
quartiles
NDI mean
quartiles

(b) Number of nodes in DTs

105

Generated data (mean # state-actions)

0

5

10

15

20

25

Ex
pe

ct
ed

 N
PL

std dev

NDI mean
quartiles
BC mean
quartiles

(c) Expected NPL vs generated data

Fig. 4: Results for Pong. Mean and quartiles w.r.t. 50 experiments. Expected NPL estimated with 20000 rollouts.

This is reflected in our results, which are presented in Fig. 3.
In Fig. 3a we plot the expected NPL of each model produced

by NDI and BC. The superiority of NDI is evident, but the
two curves are less divergent than those in Fig. 2a. We note
that while the relative performance of NDI increases with
iterations, the performance of BC also rises.

As a result of what we see in Fig. 3a, the superiority of
NDI in terms of model size is also more subtle than in Fig. 2b.
Hence, to demonstrate that NDI nevertheless produces more
compact models than BC, in Fig. 3b we plot expected NPL
against number of nodes for all the models. The curve for NDI
clearly dominates that of BC.

Fig. 3c plots expected NPL against the amount of generated
data. Once again, NDI clearly dominates BC, but in a less
striking way than in Fig. 2c.

C. Pong

The results for Pong are presented in Fig. 4.
Pong poses a unique challenge for which NDI seems

particularly effective. The original game is based on images,
making its input space and dynamics out of scope for the
type of verification we consider. To include it as an example
in our work, we therefore adopt the transformation used by
Viper2 for the same purpose. This non-conservative abstraction

Authorized licensed use limited to: University of Waterloo. Downloaded on August 04,2024 at 18:40:20 UTC from IEEE Xplore. Restrictions apply.

constructs a vector of seven integer features from a sequence
of four 210 × 160 × 3 image frames. The resulting loss of
information results in conflicts in the training data (aleatoric
uncertainty), such that different game states map to the same
abstract state. While this does not necessarily prevent learning
an adequate controller to play the game, as shown in [4], it
reduces the maximum possible behavioural fidelity w.r.t. the
oracle.

Fig. 4a demonstrates that NDI dramatically outperforms
BC in terms of expected NPL. With increasing iterations, BC
appears to converge to near zero NPL, while NDI continues to
rise, with no apparent plateau within 40 iterations. The robust
peak for BC at iteration 2 reflects the fact that the training data
comes from just one short prefix, i.e., |D| ≈ 133� the length
of a complete path (ca 1600) and therefore has few conflicts.

The numbers of nodes plotted in Fig. 4b show that NDI’s
models are small and increase in size in line with NPL. By
contrast, the size of BC’s models increases rapidly, with a trend
that is apparently inversely related to NPL. Complete paths of
Pong are long, resulting in complex models. This explains the
joint peak of NDI and BC at iteration 1, since both algorithms
are trained on the same complete paths. After that, however,
NDI only trains on non-divergent prefixes, while BC continues
to train on long paths with conflicts that limit NPL.

As expected, the plot of expected NPL vs. generated data
in Fig. 4c also shows the dominance of NDI over BC. NDI’s
performance here reflects the fact that it does not wastefully
generate long paths with conflicts.

VII. CONCLUSION

Verification of learned controllers is an important challenge
that is often difficult to address directly. In this work, we have
focused on the idea of distilling a complex controller into a
more tractable, verifiable model. The fidelity of the distilled
model is crucial to the validity of the verification, so we have
defined the notion of non-divergent path length (NPL) as a
metric. Having found that existing distillation methods used
for verification do not maintain good fidelity w.r.t. NPL, we
proposed a non-divergent imitation algorithm (NDI) that gives
significant improvements in performance. Our experiments
distilling benchmark DQNs demonstrate that NDI typically
achieves greater expected NPL, produces more compact mod-
els and is more data efficient than competing approaches. Our
results also reveal some potentially unavoidable challenges
with any distillation-based approach. Along with the usual
requirement of having enough training data for the complexity
of the problem, i.e., epistemic uncertainty, aleatoric uncertainty
in the training data and lack of expressivity in the class of
distilled models may bound the maximum fidelity possible.
These challenges are the subject of our ongoing research.

REFERENCES

[1] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer, “Re-
luplex: An efficient smt solver for verifying deep neural networks,”
in Computer Aided Verification, 2017, pp. 97–117.

[2] C. Liu, T. Arnon, C. Lazarus, C. Barrett, and M. J. Kochenderfer,
Algorithms for verifying deep neural networks, 2020. arXiv: 1903.
06758.

[3] D. Xu, D. Shriver, M. B. Dwyer, and S. Elbaum, “Systematic
generation of diverse benchmarks for DNN verification,” in Computer
Aided Verification, 2020, pp. 97–121.

[4] O. Bastani, Y. Pu, and A. Solar-Lezama, “Verifiable reinforcement
learning via policy extraction,” in NeurIPS, 2018, pp. 2494–2504.

[5] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, Handbook of
Model Checking. Springer International Publishing, 2018, pp. 1–1210.

[6] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation
learning and structured prediction to no-regret online learning,” in
AISTATS, 2011, pp. 627–635.

[7] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive
elements that can solve difficult learning control problems,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. SMC-13, no. 5,
pp. 834–846, 1983.

[8] S. Ross and J. A. Bagnell, “Efficient reductions for imitation learn-
ing,” in Journal of Machine Learning Research, vol. 9, 2010.

[9] X. Zhang, Y. Li, Z. Zhang, and Z.-L. Zhang, “f -gail: Learning f -
divergence for generative adversarial imitation learning,” in NeurIPS,
2020.

[10] P. Barde, J. Roy, W. Jeon, et al., “Adversarial soft advantage fitting:
Imitation learning without policy optimization,” in NeurIPS, 2020.

[11] M. Vasic, A. Petrovic, K. Wang, et al., Moet: Interpretable and
verifiable reinforcement learning via mixture of expert trees, 2019.
arXiv: 1906.06717.

[12] A. Verma, H. Le, Y. Yue, and S. Chaudhuri, “Imitation-projected
programmatic reinforcement learning,” in NeurIPS, vol. 32, 2019,
pp. 15 752–15 763.

[13] H. Zhu, Z. Xiong, S. Magill, and S. Jagannathan, “An inductive
synthesis framework for verifiable reinforcement learning,” in PLDI,
2019, pp. 686–701.

[14] N. Narodytska, S. Kasiviswanathan, L. Ryzhyk, S. Sagiv, and T.
Walsh, “Verifying properties of binarized deep neural networks,” in
AAAI, 2018.

[15] A. Jhunjhunwala, J. Lee, S. Sedwards, V. Abdelzad, and K. Czar-
necki, “Improved policy extraction via online Q-value distillation,” in
IJCNN, 2020, pp. 1–8.

[16] J. Törnblom and S. Nadjm-Tehrani, “Formal verification of input-
output mappings of tree ensembles,” Science of Computer Program-
ming, vol. 194, 2020.

[17] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools
and Algorithms for the Construction and Analysis of Systems, C. R.
Ramakrishnan and J. Rehof, Eds., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 337–340.

[18] F. Pedregosa, G. Varoquaux, A. Gramfort, et al., “Scikit-learn: Ma-
chine learning in Python,” Journal of Machine Learning Research,
vol. 12, pp. 2825–2830, 2011.

[19] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion, Second. The MIT Press, 2018.

[20] A. W. Moore, “Efficient memory-based learning for robot control,”
University of Cambridge, Computer Laboratory, Tech. Rep. UCAM-
CL-TR-209, Nov. 1990.

[21] V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Human-level control
through deep reinforcement learning,” Nature, vol. 518, no. 7540,
pp. 529–533, Feb. 2015.

[22] M. Plappert, Keras-rl, https://github.com/keras-rl/keras-rl, 2016.
[23] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification

and regression trees. CRC press, 1984.

APPENDIX A
PROOF OF THEOREM 1 (EQUIVALENCE)

In this appendix we provide a proof of equivalence in
Theorem 1. Let Pπ[·] and Pπ′ [·] be the probability measures
induced by the respective policies π and π′. Then,

Pπ
′
[π(s1) = a1] =

∑
s∈S,π(s)=π′(s) d(s) = Pπ[π′(s1) = a1],

where s1 ∼ d(·). Next, we suppose that for t ∈ {1, · · · , T−1},

Pπ
[
π′(s1:t) = a1:t

]
= Pπ

′[
π(s1:t) = a1:t

]
(8)

and prove Pπ
[
π′(s1:t+1) =a1:t+1

]
=Pπ′

[
π(s1:t+1) =a1:t+1

]
.

The probabilities are trivially zeros if so are those in (8), by

Authorized licensed use limited to: University of Waterloo. Downloaded on August 04,2024 at 18:40:20 UTC from IEEE Xplore. Restrictions apply.

{π′(s1:t+1) = a1:t+1} ⊆ {π′(s1:t) = a1:t} and monotonicity.
Otherwise, by definition of conditional probability and (8),

Pπ
′[
π(s1:t+1) = a1:t+1

]
= Pπ

′[
π(st+1) = at+1

∣∣π(s1:t) = a1:t

]
· Pπ

′[
π(s1:t) = a1:t

]
= Pπ

′[
π(st+1)=π′(st+1)

∣∣π(s1:t)=a1:t

]
· Pπ

[
π′(s1:t)=a1:t

]
(under π′(s1:t) = a1:t = π(s1:t), the states s1:t+1 generated by
π′ has the same distributions as those generated by π hence)

= Pπ
[
π(st+1)=π′(st+1)

∣∣π′(s1:t)=a1:t

]
· Pπ

[
π′(s1:t)=a1:t

]
= Pπ

[
π′(st+1) = at+1

∣∣π′(s1:t) = a1:t

]
· Pπ

[
π′(s1:t) = a1:t

]
= Pπ

[
π′(s1:t+1) = a1:t+1

]
.

Therefore, (8) is true for all t = 1, · · · , T and its application
to the expected NPL finally yields

E
[
ł(π|τπ

′
)
]

=
∑T
t=1 Pπ

′[
π(s1:t) = a1:t

]
=
∑T
t=1 Pπ

[
π′(s1:t) = a1:t

]
= E

[
ł(π′|τπ)

]
when the terminal index T is constant (i.e., determined only
by timeout).

In general, T is a stopping time, i.e., each event {T ≤ t}
depends at most on the states and actions s1a1 · · · stat up to
instant t. To complete the proof with this general case, note
first that an NPL (1) for a complete path τ satisfies

ł(π|τ) =
∑N
t=1 1

[
π(s1:t) = a1:t and t ≤ T

]
, (9)

where N ∈ N denotes the timeout thus satisfies T ≤ N . Here,
the conditions inside the indicator function satisfy:

Pπ
′[
t ≤ T | a1:t = π(s1:t)

]
= Pπ

′[
t ≤ T |π′(s1:t) = π(s1:t)

]
= 1− Pπ

′[
T ≤ t− 1 |π′(s1:t) = π(s1:t)

]
({T ≤ t−1} depends at most on s1a1 · · · st−1at−1 and under
π′(s1:t) = a1:t = π(s1:t), those states (and actions) generated
by π′ have the same distributions as those generated by π, so)

= 1− Pπ
[
T ≤ t− 1 |π′(s1:t) = π(s1:t)

]
= Pπ

[
t ≤ T |π′(s1:t) = π(s1:t)

]
= Pπ

[
t ≤ T |π′(s1:t) = a1:t

]
.

Employing this equality and (8), we obtain

Pπ
′[
π(s1:t) = a1:t and t ≤ T

]
= Pπ

′[
t ≤ T |π(s1:t) = a1:t

]
· Pπ

′[
π(s1:t) = a1:t

]
= Pπ

[
t ≤ T |π′(s1:t) = a1:t

]
· Pπ

[
π′(s1:t) = a1:t

]
= Pπ

[
π′(s1:t) = a1:t and t ≤ T

]
,

provided that Pπ[π(s1:t) = a1:t] 6= 0 (otherwise, by mono-
tonicity with {π(s1:t) = a1:t and t ≤ T} ⊆ {π(s1:t) = a1:t}
and (8), those probabilities are also zeros). Therefore, applying
the last equality to (9), we finally have

E
[
ł(π|τπ

′
)
]

=
∑N
t=1 Pπ

′[
π(s1:t) = a1:t and t ≤ T

]
=
∑N
t=1 Pπ

[
π′(s1:t) = a1:t and t ≤ T

]
= E

[
ł(π′|τπ)

]

(where the timeout N is constant, but T is not in general) and
the proof of equivalence in Theorem 1 is now completed.

APPENDIX B
SUBROUTINE TO SELECT BEST POLICY

We assume an MDP (S,A, d,P) and an oracle π∗, as de-
scribed in Section III. The outer loop (lines 3 to 21) iteratively
refines the input set of policies by repeatedly selecting the
half of the current set with the highest estimated expected
NPL. The loop terminates when there is just one remaining
policy, which is returned in line 22. For each of the current
policies (lines 5 to 18), lines 7 to 17 calculate the NPL of imax

rolled-out paths. Line 19 creates a bijection to order the current
polices w.r.t. estimated expected NPL, which line 20 uses to
select the upper 50th percentile. This refinement approximately
halves the size of M ′, depending on whether |M ′| is odd or
even, while line 21 doubles the number of rollouts per policy,
thus approximately maintaining the same total number of
rollouts per iteration and increasing the accuracy of subsequent
estimations.

Algorithm 3: Subroutine SelectBest
Input: M : a set of candidate policies
Output: A policy π ∈M with greatest estimated

expected NPL
1 M ←M
2 imax ← minimum number of rollouts per policy
3 while |M | > 1 do
4 M ′ ← ∅
5 foreach π ∈M do
6 l← 0

7 repeat imax times
8 for t = 1, 2, . . . do
9 if t = 1 then

10 sample st ∼ d(·)

11 else if t− 1 is terminal index then
12 break

13 else
14 sample st ∼ P(st−1, π

∗(st−1))(·)

15 if π(st) 6= π∗(st) then
16 break

17 l← l + t/imax

18 M ′ ←M ′ ∪ {(π, l)}

19 Let φ : M ′ ↔ {1, 2, . . . , |M ′|} s.t. ∀(π, l), (π′, l′) ∈M ′
φ((π, l)) > φ((π′, l′)) ⇐⇒ l > l′

20 M ← {π | (π, l) ∈M ′ and φ((π, l)) ≥ d|M ′|/2e}
21 imax ← 2 · imax

22 return π | ∃!π ∈M

Authorized licensed use limited to: University of Waterloo. Downloaded on August 04,2024 at 18:40:20 UTC from IEEE Xplore. Restrictions apply.

		2022-08-25T01:33:56-0400
	Preflight Ticket Signature

