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Abstract— Semantic segmentation is an important perception
function for automated driving (AD), but training a deep
neural network for the task using supervised learning requires
expensive manual labelling. Active learning (AL) addresses this
challenge by automatically querying and selecting a subset
of the dataset to label with the aim to iteratively improve
the model performance while minimizing labelling costs. This
paper presents a systematic study of deep AL for semantic
segmentation and offers three contributions. First, we com-
pare six different state-of-the-art querying methods, including
uncertainty-estimate, Bayesian, and out-of-distribution meth-
ods. Our comparison uses the state-of-the-art image segmen-
tation architecture DeepLab on the Cityscapes dataset. Our
results demonstrate subtle differences between the querying
methods, which we analyze and explain. We show that the
differences are nevertheless robust by reproducing them on
architecture-independent randomly generated data. Second, we
propose a novel way to aggregate the output of a query, by
counting the number of pixels having acquisition values above
a certain threshold. Our method outperforms the standard
averaging approach. Finally, we demonstrate that our findings
remain consistent for whole images and image crops.

I. INTRODUCTION

Semantic image segmentation (SIS) is an important per-
ception task in robotics and automated driving (AD). Re-
cently, deep supervised learning has shown promising results
in this task. However, deep supervised learning requires a
large amount of labelled data. labelling images for SIS by
human annotators is both expensive and time-consuming
relative to data collection [1].

Active Learning (AL) [2] addresses this problem by se-
lecting only a subset of collected data to label. Given a set of
unlabelled data, AL aims to find a small subset that gives the
most accurate model [3]. The process can be iterative, where
each query is based on the model learned so far, hence the
name active learning. Thus, the cost of labelling is minimized
while the performance is maximized.

Currently, active learning for SIS with deep neural net-
works has not been extensively studied. Most works in this
area focus on image classification [4]-[8], while the few that
do focus on SIS with deep learning have limited querying
methods and outdated network architectures [9]-[11].

This paper contributes a comparison of multiple querying
methods for their effectiveness in AL. We also propose
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a novel way to query images by counting the number of
pixels with acquisition values above a certain threshold. Our
results are then compared between querying whole images
and image crops. The predictor used is DeepLabv3+ [12], a
state-of-the-art deep neural network for SIS. The dataset is
Cityscapes [1], a collection of finely annotated street-view
images captured from a vehicle in cities.

Following a brief background and related work on SIS and
AL, we describe the methods used in this research, including
each query method, network architecture, and training pro-
cess. Finally, we present and discuss the experimental results.

II. BACKGROUND AND RELATED WORK
A. Semantic Image Segmentation

SIS [13] is the process of classifying each pixel in a given
image. The classes are predefined and each pixel must be
labelled as one of them. An exception is the “ignore” class.
Pixels labelled as “ignore” in the ground truth will not affect
evaluation. A common metric for evaluating SIS is the mean
Intersection-Over-Union (mIOU) [14].

B. Active Learning

AL is described in detail in the survey by Settles [15].
In pool-based AL [16], which is our focus, a pool of data
is collected but not labelled. AL queries the unlabelled
pool to select samples to be labelled by an oracle, who
is usually a human annotator. The newly labelled data are
then added to the labelled training set. Using the training
set, a machine learning model is trained through supervised
learning. The model is then evaluated on the validation set. If
the performance is satisfactory or if the budget for labelling
is spent, the process is stopped. If the stopping criteria are
not met, the model is used to query new samples from the
unlabelled pool and the whole cycle starts again (see Fig. 1).

There are many different ways to query. The simplest
one is random querying. To perform better than the random
baseline, a querying method typically examines each datum
and uses an acquisition function to estimate some notion of
information gain. Since one wants to maximize the informa-
tion gain, data with the largest acquisition values are often
chosen. In some cases, however, it might be beneficial to
query part of data with lower acquisition values to diversify
the samples. Fu, Zhu, and Li [17] have a good example of
the effects of sample diversity in their paper.

C. Active Learning for Semantic Segmentation

AL for SIS has similar ideas as AL for classification.
One difference is that since each image has multiple pixel
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predictions, the labelling cost for each image could be
different, and crops of images could be queried in region-
based AL [9], [18]. In this paper, however, we assume the
labelling cost for each image is the same and images must
be cropped before the first AL cycle begins.

AL for SIS with deep learning is explored in [9]-[11].
Gorriz et al. [10] use U-net [19] for the network and Monte-
Carlo dropout for querying. Yang et al. [11] use Fully Convo-
lutional Network (FCN) [20] for network and bootstrapping
[21] as acquisition function with cosine similarity for sample
diversity. Mackowiak et al. [9] also use FCN for the network
and explored entropy querying and vote entropy querying.

III. RESEARCH QUESTIONS AND METHODOLOGY

Our research objective is to examine and compare different
AL designs for SIS. More specifically, it is to answer the
question of what is the best way to label a pool of data
to train a deep model to achieve the highest performance
with the lowest labelling cost. To answer this question,
we perform experiments that explore the AL design space,
which consists of three main dimensions: queried unit type,
pixel acquisition function, and aggregation method. Each
dimension has multiple choices, and thus the best AL design
is a combination of choices from each design dimension.

Fig. 2 illustrates our experiment design tree. For each
AL experiment, a querying unit can be either a batch of
whole images or image crops. In this paper, the word
“image” refers to both whole image and image crop, unless
stated otherwise. The querying order can be either random
(our baseline) or ranked by an image acquisition function.
Each image acquisition value is aggregated from its pixel
acquisition values either by averaging or by counting values
(our proposal) over a threshold. We explore 6 different pixel
acquisition functions in addition to random selection. Over-
all, the diagram represents 26 different querying approaches.

A. Acquisition Functions

The acquisition functions compared are random, entropy
[22], max-softmax [23], margin [24], ODIN [25], BALD
[26], and vote entropy [27]. They are either standard, com-
mon, or state of the art in relevant contexts. Random is a
standard baseline query; entropy, max-softmax and margin

are common queries in active learning [15]; ODIN is a state-
of-the-art calibration technique; BALD and vote entropy are
state-of-the art uncertainty measures.

1) Random: Random querying is used as the baseline for
all comparisons. Each image in the unlabelled pool has an
equal probability to be queried. The acquisition function is
a pseudo-random number generator of uniform distribution.

2) Entropy: The closer the distribution is to uniform, the
more uncertain the model is, and the higher entropy it has
[22]:

S=- Z P.log P,

where P. is the softmax output of the neural network for
class c.

3) Max-softmax: It considers the probability of the most
likely class as a measure of confidence [23]. We pick the
samples that are the least confident:

S =1—max(P.)

4) Margin: It measures the ambiguity between the top
two classes by taking the difference between the highest two
class probabilities P, and P, [24]:

S:1—(P1—P2)

5) ODIN: ODIN (Out-of-Distribution detector for Neural
networks) [25] is an enhancement of max-softmax, where
the softmax function is scaled by temperature 7. T is a
hyperparameter that can be calibrated for a neural network
model to give a more accurate confidence prediction [28].
The calibrated softmax function is

exp (fi(2)/T)

N
> =1 6xp (fe(®)/T)
where f.(z) is the output of the neural network before
softmax for class ¢. N is the number of classes. P; is the
calibrated probability for class 7. The input image z is also

preprocessed by adding a small perturbation scaled by e,
such that

Pi(x;T) =

T =x —esign(—Vglog Py(x; T))

and where
Py(x;T) = max P.(x; T).
(&

The per-pixel acquisition function for ODIN querying
follows (III-A.3).

6) BALD: BALD (Bayesian Active Learning by Disagree-
ment) [26] is a Bayesian AL technique for image classifica-
tion [4]. In this approach, a Bayesian network uses dropout
[29], which is normally a stochastic regularization technique
used during training. In BALD, dropout is performed during
training as well as during inference [30]. The result is a
committee of different models from the same network. The
per-pixel acquisition function for BALD querying is given
by

Iy, w|X, Dirain] = H[y|X, Dirain] — E p (| D) [HIy[%, w]].

H{[y|X, Dyain] i the entropy of marginal posterior y given
input x and pool data Dy, (y is approximated as an average
over the committee member outputs [4]).
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7) Vote Entropy: Vote Entropy [27] applies a Bayesian  aggregation by counting is given by
network and MC dropout, similar to BALD. The per-pixel
acquisition function for vote entropy querying is Simage = Z D(Spixel, @)/ Nimage
pixel€image
1 ifs>a
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Ng
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Ng

- log

Ve

C

1 if argmaz(a) =c

where D(a,c) =

0 otherwise.

Variable e represents a member of committee (sampled
through dropout), and Ng is the number of models in the
committee. P, is the softmax output of member e.

B. Aggregation Methods

In order to evaluate an image, all its pixel acquisition
values need to be aggregated into a single image acquisition
value. Choosing a good aggregation method is challenging
because it is difficult to know the importance of a pixel before
labelling.

A simple and reasonable assumption is that each pixel
has importance in proportion to its acquisition value, such
that the image acquisition value is simply the average of
all pixel acquisition values. The image acquisition value of
aggregation by averaging is thus given by

>

pixel€image

Simage = Spixel/Nimage

where Spixel is the pixel acquisition value, and Njpyage is the
number of pixels in the given image.

An alternative view is that not all pixels are useful.
Hence, we propose a novel aggregation method that counts
the number of pixels that have a pixel acquisition value
greater than some threshold a. This gives an estimate of the
area of informative regions. The image acquisition value of

where D(s,a) = {0 otherwise

C. Querying Unit

Mackowiak et al. [9] show that querying image crops
outperforms querying whole images with the same total
number of pixels. Since this has been done, we do not
replicate their experiment with region-based AL. Instead, we
experiment with different querying and aggregation methods
on a pool of random crops. For every whole image in the
dataset, we randomly cropped a single 512 x 512 crop, 8
times smaller than the whole image, and discarded the rest
of the image. The collection of random crops are now treated
as the new data pool. During every AL cycle, each crop is
treated as a whole image, albeit with different resolution,
and everything else is kept the same for comparison. The
evaluations are still performed on the original validation set
with whole images.

The difference between our approach and region-based AL
is that it uses a sliding window to scan all the whole images.
Crops within the sliding window are selected by a metric,
and every selected crop is labelled. Thus, cropping becomes
part of the image querying process. In our approach, the
image querying process comes after cropping.

IV. EXPERIMENT SETUP
A. Network Architecture

The network architecture we wuse in this work is
DeepLabv3+, which extends DeepLabv3 with encoder-
decoder structure [12]. It employs techniques from previous
versions, including atrous convolution and atrous spatial
pyramid pooling (ASPP) [31]-[33]. Currently, DeepLabv3+
has state-of-the-art results on SIS datasets, including
Cityscapes [12].
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The backbone architecture we use is resnet_v1_50_beta,
which modifies ResNet-101 [34] by replacing the first 7 x 7
convolution with three 3 x 3 convolutions [12]. The weights
are pretrained on ImageNet [35].

During training, we use a batch size of §, a base learning
rate of 0.007, weight decay of 0.0001, atrous rates of 6,
12, and 18, an output stride of 16, and a decoder output
stride of 4. For data preprocessing, every image is randomly
cropped to 512 x 512, randomly flipped, and scaled by a
factor between 0.5 and 2. For this setup, a model fully-trained
on the entire Cityscapes training set can achieve around 75%
mlIOU.

For BALD, the dropout rate is 0.9 for training, and
0.5 for inference. The difference in dropout rates between
training and inference are compensated by weight scaling.
The number of models in the committee is 10 for both BALD
and vote entropy.

B. Training Procedure

Since the Cityscapes dataset is already fully labelled, the
ground truth is simply hidden until declared labelled. This
way, there is no need for a human annotator and the oracle is
part of the program. The dataset is divided into 2975 images
in the training set and 500 images in the validation set.

Since training for image segmentation is computationally
expensive, adding labelled images one by one is not feasible.
Therefore, a batch of size n = 50 is queried in every AL
cycle. This is not to be confused with the training batch
size. For image crops, since each crop is eight times smaller
than a whole image, we make the querying batch size eight
times larger (n = 400), so that each query acquires the same
number of pixels. To ensure all querying methods have a fair
comparison, every experiment starts with the network trained
to convergence with the same m = 50 images, selected as
follows. The network was fully trained twice with each of
five sets of 50 randomly selected images, giving a total of ten
training runs and corresponding models. The performance of
the ten models ranged from 50% mIOU to 52% mIOU. We
selected a model having performance around 51% mIOU to
be the initial model for all experiments, i.e. a model in the
middle of the range.

Fig. 1 shows our experimental AL cycle. The current
trained model is used to query the unlabelled pool, in order
to select the next batch of images with the highest acquisition
values. In the first cycle, the common initial model is used
to query the unlabelled pool. The selected images have their
ground truth revealed and are added to the labelled training
set. Using the combined training set, the model is trained
again from scratch to avoid catastrophic forgetting. The cycle
repeats until the stopping criteria are met.

V. RESULTS

Our experiments are divided into three parts, each corre-
sponding to a dimension of the experiment design shown in
Fig. 2. The first part examines all of the pixel acquisition
functions with aggregation by averaging on whole images.

We compare the three uncertainty measures: entropy, max-
softmax, and margin querying, then the two Bayesian meth-
ods: BALD and vote entropy. ODIN is studied separately
to demonstrate the effect of temperature 7" and perturbation
€. For the second part, the most promising methods from
the first part are selected to apply aggregation by counting.
In the final part, aggregation by counting is compared with
averaging on image crops. All experiments are compared
with the random baseline as reference.

To evaluate a given querying method, we look at the learn-
ing curve, which plots the model’s mIOU on the validation
set as a function of the cumulative amount of labelled data
in the training set, as the AL cycles proceed. Since the
goal is to save labelling costs, the best querying method
has a learning curve that rises the quickest. Eventually, all
querying methods converge to the performance of a model
trained on the entire data pool. All of our learning curves
are averaged over four independent runs. We find that the
variance between runs is small. To compare methods, we use
area under the learning curve (ALC), where each learning
curve is normalized w.r.t. the maximum mIOU possible with
its corresponding data pool. In what follows, we use the term
ALC to refer to this normalized metric. Since the fastest
growing learning curve has the highest ALC, a higher ALC
indicates a better querying method when the learning curves
do not intersect.

We use our results to answer three questions. First,
whether using uncertainty and OOD measures for querying
improves the performance of AL over the random baseline,
and how these measures perform relative to one another.
Second, how our proposed counting-based image acquisition
value aggregation compares to the existing average-based
aggregation. Third, whether the answers to the previous
questions hold when the queried units are whole images as
well as when the units are image crops.

Our results are summarized in Fig. 3, where the average
learning curves for each method are normalized by scaling
them w.r.t. the mIOU of the first cycle and the mIOU of
the entire corresponding data pool. Normalization is needed
because there are eight times fewer pixels in the image
crop data pool: each crop is eight times smaller than the
whole image, with the regions outside crops not in the data
pool. The maximum achievable unnormalized mIOU for our
particular selection of random crops is 65%, compared with
75% for whole images. All normalized curves eventually
reach 100%, but we focus on the range 50 to 400 images,
which includes the entire data pool for crops and is sufficient
to illustrate the differences in performance. Since the learning
curves are close and occasionally overlap, for clarity we plot
the range of the active querying methods as a shaded band.
The random baselines are plotted with solid lines.

A. Aggregation by Averaging on Whole Images

Our first experiment compares all of the considered pixel
acquisition functions, using aggregation by averaging on
whole images (orange curves in Fig. 3). We can see im-
mediately that all pixel acquisition functions perform better
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the number of whole images or their equivalent amount of pixels. For
example, 200 on the x-axis represents 200 whole images and 1600 image
crops because they have the equivalent amount of pixels. The y-axis
represents the normalized mIOU where 0 maps to the real mIOU of the
initial model and 1 maps to the mIOU where the whole dataset is queried.

than the random baseline at every AL cycle. There is also a
significant gap between the band of querying methods and
the random baseline. This shows that using any of the query-
ing methods achieves a higher mIOU than using random
querying, for any amount of labelled data. For example, at
250 whole images, the top querying outperforms random
querying by 6% mlIOU. From an alternative perspective,
using any querying methods can save labelling cost at any
mlIOU level. For example, at 63% mIOU, the top querying
method uses 50% less labelled data than random querying.

The differences between the active querying methods are
more subtle, especially between the best methods. These
tend to be concentrated near the top of the shaded band. To
distinguish the methods, Table I lists the normalized ALC
of all querying methods considered. The querying methods
marked with v, and that specify threshold a, use aggregation
by counting, while the rest use aggregation by averaging. We
see that the ALCs of the querying methods with aggregation
by average are close to each other, ranging from 186.4 to
221.7. On the other hand, random querying is much lower
at 145.7.

The ALC values show that all active querying methods
are better than random querying, and that the differences
between them are small. These small differences may seem
surprising, given that the acquisition functions have very
different properties and purposes. One plausible explanation
is that our experimental architecture is close to the optimal
performance of AL, given the dataset and given the querying
units are whole images. It may not be possible to achieve a
significantly higher ALC.

We now look at different groups of querying methods in
more detail.

The three uncertainty measures are entropy, max-softmax,
and margin, which we note have similar ALC performance.
Although these three methods give different emphasis to the

TABLE I
NORMALIZED ALC FOR WHOLE IMAGES

Counting | Querying Method ALC
Random (baseline) 146

ODIN: T' = 1000, € = 0.0014 186

ODIN: T'= 10 193

ODIN: T' = 100 202

ODIN: 7' = 1000 203

ODIN: T'=0.01 206

Margin 207

Vote Entropy 208

ODIN: T'=10.1 209

Max Softmax 211

v Margin: a = 0.8 214
v Max Softmax: a = 0.5 215
Entropy 215

BALD 218

v Entropy: a = log (2) 222

range of softmax distributions they encounter, they agree
exactly at the extremes [15]. A uniform distribution has the
maximum pixel acquisition value in all three measures, while
a single peak distribution has the minimum in all three. We
therefore hypothesize that it is these extremes that dominate
the performance of the uncertainty metrics in the present
context.

The two Bayesian methods, vote entropy and BALD,
show small but significant differences. We observed that vote
entropy querying performed no better than entropy querying
in our experiments, which is in agreement with the result
from Mackowiak et al. [9]. However, BALD performed better
than vote entropy and entropy in every AL cycle, making it
one of the best querying methods by a small margin. This
is possibly because BALD gives relatively low acquisition
values for the pixels around the contour of objects and the
boundary where one class transitions into the next. These
contour pixels have high aleatoric uncertainty [36], which
may not be beneficial.

ODIN querying is a more complex case. Liang, Li, and
Srikant [25] show that as T increases, OOD detection
performance increases monotonically, with the improvement
diminishing as 7' becomes large. We find the intuition of
this result is incorrect in the context of active learning.
Noting that max-softmax is equivalent to ODIN with T' =
1 and ¢ = 0, our experiments show that the ascending
order of performance for 7" is 10,100, 0.1, 1, which is not
monotonic. Liang, Li, and Srikant also show that a large
T and a moderate epsilon is the best for OOD detection,
with 7' = 1000 and ¢ = 0.0014 working well for them. We
tried these parameters in our active learning experiments,
but they performed significantly worse than max-softmax.
We conclude that in the context of active learning, 7" must
be optimized as a hyperparameter.

B. Validation on Synthetic Data

The results for ODIN are surprising, so we performed
additional experiments on synthetic data to eliminate the
possibility that they are specific to our chosen dataset or
network. Figs. 4 and 5 compare the entropy distributions
of image acquisition functions for real and synthetic pixel
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data. The real data are the softmax distributions produced
by our network for a typical image chosen in an active
learning cycle. For the synthetic data, we randomly generated
a pool of softmax distributions, skewed towards low entropy
and approximately ranging over the same entropy values as
the real data. In each case, we ordered the distributions by
entropy and calculated cumulative sums of the various pixel
acquisition functions. The final sum for each query method
corresponds to the image acquisition value. Since the image
acquisition functions do not all range over the same values,
the cumulative sums were normalized. The y-axes in Figs. 4
and 5 thus report the fraction of the image acquisition value.

The figures reveal that the real and synthetic distributions
are not identical, but nevertheless confirm some of the char-
acteristics we observe in our experiments. We see in Fig. 4
that the distributions of entropy, max-softmax and margin are
close, mirroring their performance in our experiments. The
same curves in Fig. 5 are also close, especially in comparison
to the curves for the ODIN queries. Importantly, given max-
softmax is equivalent to ODIN with 7" = 1, both figures
demonstrate the non-monotonic behaviour with respect to
T. In both cases, the curve for ODIN 1" = 10 does not lie
between the curves for 7' = 1 and 7" = 100, as might be
expected, but is further away from the entropy curve than
ODIN T = 100. These results suggest that our conclusions
are robust and not dataset nor network dependent.

C. Aggregation by Counting on Whole Images

For the second part of our investigation, we selected the
three uncertainty acquisition functions for aggregation by
counting. For entropy querying, we experimented with a
threshold a = —2 % 0.5 % log(0.5) = log(2). The entropy
at this particular threshold corresponds to a distribution with
two classes having an equal probability of 0.5, and all other
classes being 0. This is an important threshold because a
lower entropy is more likely to have a single distinctive peak
in the class probability distribution. We find that entropy
querying with aggregation by counting has higher ALC than
entropy querying with aggregation by average.

Next, we compare the performance of max-softmax query-
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Fig. 5. Entropy distributions of synthetic acquisition values

TABLE 11
NORMALIZED ALC FOR CROPS

Counting | Querying Method ALC
Random (baseline) 234

Margin 254

Max Softmax 254

Entropy 257

v Entropy: a = log(2) 257

v Margin: a = 0.8 257

v Max Softmax: a = 0.5 259
ODIN: T = 0.1 259

ing. We experimented with aggregation by counting with
threshold a = 0.5, which corresponds to the distribution
having two 0.5 class probabilities and log(2) entropy. Note,
however, the two query thresholds are different for other
distributions. The results show that max-softmax querying
by counting with ¢ = 0.5 has better performance than
aggregation by average.

Finally, we compare the performance of margin querying.
Margin querying with threshold ¢ = 0.8 excludes distri-
butions with a difference between the top two probabilities
greater than 0.2. The results show that margin querying by
counting with a = 0.8 performs better than aggregation by
averaging.

Overall, these results show that aggregation by counting
performs better than the standard aggregation by averaging
for entropy, max-softmax, and margin querying.

D. Image Crops

For the final part of our investigation, we compare both
aggregation methods on image crops. First, note that the
normalized learning curves for image crops in Fig. 3 out-
perform those for whole images. Further, we see in Table II
that, as with the results for whole image querying, all
aggregation by counting queries outperform their averaging
counterparts, although by a smaller margin. We also include
an experiment using ODIN with 7" = 0.1, which was one
of the best performing 7" values. Once again, it outperforms
max-softmax (7' = 1). Overall, these experiments confirm
that aggregation by counting is superior to aggregation by
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averaging, regardless of whether the querying unit is a batch
of whole images or image crops. The results also suggest
that using image crops with aggregation by counting is the
most effective query method.

VI. CONCLUSION

We compared six different querying methods in the context
of active learning for image segmentation and found small
but discernible differences among them. We demonstrated
these results on the industry-standard dataset Cityscapes,
as well as on randomly generated data, using the state-of-
the-art image segmentation architecture DeepLabv3+. We
also proposed a novel method, counting with threshold,
to aggregate the pixel acquisition value. We showed our
method performs better than the standard aggregation by
averaging. These findings were repeated with image crop as
the querying units, and the results still hold.

Due to the high computational costs, we leave the evalu-
ation of other image segmentation datasets and architectures
for future work. We believe other image aggregation methods
with pixels weighted unequally would also be worth explor-
ing. Furthermore, it would be interesting to see the com-
bination of aggregation by counting with other dimensions,
such as region-based active learning. We believe that such a
combination could potentially outperform previous results.
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