
The Role of Semiotic Engineering in Software Engineering

Vahdat Abdelzad
School of Electrical

Engineering and Computer
Science, University of Ottawa

Ottawa, Ontario, Canada
v.abdelzad@uottawa.ca

Timothy C. Lethbridge
School of Electrical

Engineering and Computer
Science, University of Ottawa

Ottawa, Ontario, Canada
tcl@eecs.uottawa.ca

Mahmood Hosseini
Faculty of Science and

Technology, Bournemouth
University

Poole, United Kingdom
tcl@eecs.uottawa.ca

ABSTRACT
Semiotic engineering is based upon the semiotic theory of
Human-Computer Interaction (HCI), which focuses on com-
munication between designers and users. Semiotic engi-
neering tries to improve users’ interpretation through meta-
communication and emphasizes that designers should play
the role of legitimate interlocutors in interactive systems.
On the other hand, there is a gap in software engineering on
how to obtain systems specifications efficiently, how to cre-
ate easy-to-understand and communicative models, and how
to produce comprehensive modeling languages and develop-
ment processes. In this paper, we explore several contri-
butions of semiotic engineering to software engineering and
discuss how the theory can facilitate the creation of com-
prehensive artifacts. We also discuss semiotic engineering
for assessing and improving software modeling languages, in
our case UML. We anticipate that our work would lead to
the semiotic theory becoming recognized as a central theory
driving software engineering research and practice.

CCS Concepts
∙Software and its engineering → Software creation
and management; Software system models; ∙Human-centered
computing → HCI theory, concepts and models;

Keywords
Semiotic engineering; communication; software engineering;
modeling; artifact; UML

1. INTRODUCTION
In software engineering, scientists concentrate on such is-

sues as development approaches, modeling tools, and test-
ing methods so as to produce high quality software systems
[24]. In order to achieve this goal, researchers and indus-
trial companies have been using various approaches, such as
Model-Driven Software Development (MDSD) [8]. Unfor-
tunately, the nature of communication among the multiple

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

TOSE’16, May 16 2016, Austin, TX, USA
c⃝ 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4174-5/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2897134.2897136

stakeholders involved in software engineering has received
little attention. An example of this is restrictions on expres-
siveness imposed by notations in requirements engineering
[6].

In current software engineering approaches, it is possi-
ble to find patterns and guidelines that aim at facilitating
communication, but it is rare to find a concrete theory sup-
porting them. Communication in software engineering is
primarily undertaken through artifacts, where each artifact
might be produced by one or several stakeholders and can
be used by many other stakeholders. Improper or immature
communication may result in severe consequences, such as
extra cognitive work for developers, misunderstanding of re-
quirements, and failed software systems.

In the domain of human computer interaction (HCI), var-
ious theories, e.g., distributed cognition [18] and activity
theory [19], have been developed to address communication.
However, one theory, named semiotic engineering [13], has a
distinctive perspective. This theory concentrates on commu-
nication as its base concept. Indeed, semiotic engineering is
a theory of HCI which focuses on how well producers of soft-
ware artifacts communicate their intent to their consumers
through user interface signs and patterns of interaction [13].
In other words, semiotic engineering consists of a powerful
infrastructure for the purpose of studying communication
and it provides concepts to assess and improve communi-
cation between producers and consumers. Therefore, this
theory focuses on communication as an issue often forgotten
by scientists in both HCI and software engineering. Semiotic
engineering is, consequently, an eligible candidate theory to
be applied to software engineering in order to manage the
communication challenge.

The goal of this paper is to draw attention to the con-
cept of communication in software engineering in a scientific
way through the theory of semiotic engineering. Bringing
either a theory or a solution based on a theory into a field
like software engineering is not an easy task. Hence, we be-
lieve there needs to be considerable thought and research
before such a theory can become influential and successful.
However, there is a need to start somewhere, and explore
which theories have the potential to be used in the field.
This paper hence provides some preliminary thoughts about
the role of semiotic engineering in software engineering and
why it has the potential. It also discusses the application of
semiotic engineering in software modeling languages, such as
UML, as an example to express how the theory can provide
challenging questions and trigger research to seek proper an-
swers.

2016 5th International Workshop on Theory-Oriented Software Engineering

 15

Authorized licensed use limited to: University of Waterloo. Downloaded on August 04,2024 at 18:11:30 UTC from IEEE Xplore. Restrictions apply.

The rest of the paper is structured as follows. Section
2 covers key background necessary to understand semiotic
engineering. In Section 3, we focus on several relevant re-
search projects in order to investigate communication using
semiotic engineering theory in software engineering, and we
discuss their explicit and implicit contributions and draw-
backs. In Section 4, we explore applications of semiotic
engineering as a method to evaluate communication. We
discuss how one application of semiotic engineering can be
used to find usability challenges related to the Unified Mod-
eling Language (UML) [4]. This, in turn, exposes why UML
may have some communication issues in terms of education,
acceptability among developers, and lack of communication
between UML designers and UML developers (software de-
signers) as their users. Finally, we present our conclusion
and future work in Section 5.

2. SEMIOTIC ENGINEERING
Semiotics is about studying signs and sign processes as

part of communication [1]. It covers semantic, syntactic, and
pragmatic dimensions of signs. In the semantic and syntac-
tic dimensions, semiotics explores the meaning and formal
structure of signs respectively. Finally, it studies the rela-
tion between signs and sign-using agents in the pragmatic
dimension.

Semiotic engineering was initially proposed as a semiotic
approach to design user interface languages [13]. However,
it has been evolved over years into a semiotic theory of
HCI. The theory concentrates on two fundamental concepts
named metacommunication and meaning. Metacommunica-
tion is all about ”communication about the communication”.
In other words, it is the main process held in the designer-to-
user communication and system-user communication. This
point of view considers designers and users as ”legitimate
interlocutors” at interaction time. In the theory, top level
communication is considered as a one-shot comprehensive
message paraphrased as [12]:

”Here is my understanding of who you are, what I’ve learned
you want or need to do, in which preferred ways, and why.
This is the system that I have therefore designed for you, and
this is the way you can or should use it in order to fulfill a
range of purposes that fall within this vision”

The subject ”I” in the above paragraph specifies the de-
signer of the system (or artifact) and the subject ”you” is the
user of the artifact. The type and content of the message as
sent by the designer is completely related to the context of
design. For example, there can be a guide regarding how to
perform the interaction with the artifact in an HCI context
or description of elements inside the artifact in a software
development context.

Meaning is considered to be a culturally-determined, con-
stantly evolving process. As a result, there is no fixed target
to be met, captured, and encoded. This arises from the fact
that human meanings change in both predictable and un-
predictable ways, just as human life evolves. It emphasizes
that it is impossible to fully understand the users’ meaning,
but it is possible to capture the relevant parts and encode
them in systems so as to enable communication with users.
Indeed, because of this nature there is a need for metacom-
munication.

Semiotic engineering is supported by two qualitative eval-
uation methods named the semiotic inspection method (SIM)
and the communicability evaluation method (CEM) in order

to evaluate the quality of metacommunication [14]. These
two methods have the capability to be used in the direction
of how to detect problems, how to improve the metacommu-
nication, and how to generate new knowledge. The methods
emphasize communication and signification processes rather
than cognitive processes, which are mostly used in HCI eval-
uation methods.

3. RELATED RESEARCH
In this section, we present a summary of related research

and discuss the contributions and drawbacks of these ap-
proaches. Our objective is to explain how semiotic engi-
neering could have a positive contribution to software engi-
neering in different dimensions. This section is not an ex-
haustive study about the application and effects of semiotic
engineering on software engineering. We have focused on re-
search that covers a wide spectrum of phases and activities
in software engineering and also can effectively express the
combination between the two fields.

3.1 Communication in Computer-Supported
Modeling

Computer-supported modeling (CSMod) tools help us to
define system behavior and desired system properties. There
is a need for different kinds of communication with these
tools in order to achieve software development goals. In this
subsection, we explore how semiotic engineering could help
researchers to evaluate a CSMod tool and offer some ideas
about how to improve the communication.

Ferreira et al. [16] have combined and applied Semiotic In-
spection Modeling (SIM) [14], Cognitive Dimensions of No-
tations (CDN) Framework [9], and Discourse Analysis (DA)
[17] to ARIS Express (AE) [2], in modeling tasks with Busi-
ness Process Modeling Notation (BPMN) [3], in order to
analyze the tool from an HCI perspective and understand
how communication is performed in software modeling. In-
deed, they have focused on two dimensions:

1. how modeling notations respond to the expressive needs
of model builders, and

2. how the context of communication is made available
to the model builders.

The results suggest that CSMod design tools can be evolved
in relatively unexplored directions, helping users (i.e., mod-
elers) to gain greater awareness of the communication-through-
models process. The results also show that although there
is a large amount of documentation available for AE (in the
form of tutorials, videos, manuals, etc.), when it comes to
operation, the documentation is not as helpful as one would
expect. AE delivers constraints of business modeling to users
while it could have provided task-related help for them.

The following are some specific areas the paper highlights
where investigation about communication through models
could help to improve the tool. The evidence for these rec-
ommendations was generated by empirical observation and
discourse analysis.

First, Ferreira et al. [16] determined that defining the pur-
pose of models (the builder’s intent) and the targeted con-
sumers are two important challenges. Second, the evidence
reveals that there should be a protocol between modelers
and users in order to define which elements should be used
or not, when and why. Lack of this protocol may raise a

16

Authorized licensed use limited to: University of Waterloo. Downloaded on August 04,2024 at 18:11:30 UTC from IEEE Xplore. Restrictions apply.

cognitive issue called diffuseness, which is the complexity
or verbosity of the notation in expressing meanings. Dif-
fuseness has a negative impact on the completion of tasks.
Third, there is a lack of closeness in the mapping of the rep-
resentation to the domain; this is exemplified by icons that
do not have clear meanings, forcing users to search for extra
material in order to understand them. Finally, there is the
issue of secondary notation, which is the ability to use no-
tations beyond the formal syntax for expressing information
or meaning. Neither AE nor BPMN provides such a nota-
tion. However, the availability of secondary notation has a
positive effect on the completion of tasks.

Another cognitive dimension in AE which has a positive
impact on the achievement of the task is visibility, which is
the ability to view all components simultaneously, or two or
more related components side by side at the same time. This
CDN is achieved when AE allows users to choose different
but related elements while they try to use one of them. It
was also noticed that AE interface design supports model
builders better than model readers.

In the domain of communication through models, Ferreira
et al. [16] expressed that there are mismatches between the
user profile that AE supposedly targets (occasional users
and beginners) and the one that emerges from an analysis
of emission and reception of its designers’ message. It was
also shown that designers apparently believe that it suffices
to support the expression of communication and the inter-
pretation will take care of itself. This is one of the important
challenges in communication. The research concludes that if
one wishes to discover the power of communication through
models, a combination of semiotic, cognitive, and discourse
analysis methods should be investigated. Together, not only
can they tell us about how the CSMod design message is
composed and how it affects the users as they build, edit
or read models, but also they inform us about the cognitive
challenge associated with the supported notations.

In our point of view, the significant part of the research
is to construct a protocol for communication among models.
This protocol could include social protocols as a good strat-
egy to overcome representation limitations. This is really
important because novices use the social protocol for learn-
ing the meaning of new notations and intermediate ones use
it when they are challenged by several notations with dif-
ferent meanings. Consequently, in order to discover more
issues about AE and BPMN, different levels of users (e.g.,
beginners, intermediates, and experts) could be considered
and then explored separately, and various issues could be
classified for different user levels. Furthermore, general is-
sues that could happen to all users could be identified.

In the research, it would be possible to consider the the-
ory of ecology [25] in order to know whether the level of
abstraction for AE and BPMN is proper or not. By consid-
ering the level of abstraction, it would be clear which parts
of the modeling need social protocols and which ones need
technological protocols. In addition, it would reveal which
issues are related to which levels. A mapping could also be
created between user levels and abstraction levels in order
to have more concrete and more practical findings.

Finally, the result of the research could be concretized
by getting more feedback from users, e.g., by asking ques-
tions such as how they would like to tackle issues in each
case. One good question which ought to be asked of users is
whether they would like to model using a particular tool or

modeling language. Answers to this question would reveal
the impact rate of the issues on human behaviors in accept-
ing a modeling language or tool. This is important because
although human expectation in tools can only be satisfied,
one can still identify problematic features and try to avoid
them altogether.

3.2 Communication in Software Artifacts
In the process of software development, lots of artifacts

are produced and used by stakeholders. These artifacts ne-
cessitate communication between producers and consumers,
which needs to be studied. While it is possible to find guide-
lines for this purpose [20], these guidelines cannot ensure the
suitability and helpfulness of communication. In this sub-
section, we look at a research project that explores commu-
nication between Application Programming Interface (API)
designers and programmers.

In the research done by Afonso et al. [5], API is considered
as an artifact mediating and easing the communication pro-
cess between designers and programmers. Communication
between APIs and programmers is evaluated based upon
a combined semiotic and cognitive method. Furthermore,
some tools and techniques are identified which help design-
ers to accomplish the communication task.

Programmers need to realize the concepts and the de-
sign behind the interfaces available in order to use them
effectively. This imposes a considerable amount of cogni-
tive load on programmers, depending on the abstractions
involved and the design of the artifacts provided. From a
human-centric perspective, we may consider that a commu-
nication process takes place among programmers, mediated
by the software artifacts involved. If this communication is
not satisfactory, defects related to the incorrect use of APIs
or to the misinterpretation of its design will arise in final sys-
tems. Therefore, designers need to provide necessary com-
munication information through artifacts to decrease these
kinds of defects.

The most common form of API specification is the combi-
nation of its syntactic (e.g., signatures) and semantic (e.g.,
behavior) elements written in a formal and natural language
respectively. This form limits the designers’ options to be
”present” at the interaction time to provide more dynamic
information to programmers. According to this limitation,
environments which provide runtime monitoring and behav-
ioral specification are considered to be useful because de-
signers will have more opportunity to communicate with
programmers. Contracts [21] are a good example for this
purpose.

Furthermore, from a cognitive perspective, these environ-
ments or tools have an impact on the programmers’ work-
load, since they provide a more precise description of the
API behavior than the textual documentation, helping pro-
grammers to understand the causes of possible errors by
giving them immediate feedback related to API misuses.
Another point which can be achieved by behavioral spec-
ification languages is a higher expressiveness to describe a
software artifact, allowing the use of tools, such as model
checkers [7], to validate the specification.

It is furthermore determined by Afonso et al. [5] that the
greatest focus of API specification is in syntactic and behav-
ioral dimensions, and there is not enough attention paid to
synchronization and quality of service. Communication in
terms of synchronization is a valuable resource in express-

17

Authorized licensed use limited to: University of Waterloo. Downloaded on August 04,2024 at 18:11:30 UTC from IEEE Xplore. Restrictions apply.

ing the designer’s intents, as they offer a formal definition of
the allowed sequence of operations. The quality-of-service
dimension opens the possibility of specifying non-functional
aspects of a software artifact that are more related to the
execution environment or the precision of the results of the
computation being carried out. This dimension offers de-
signers an opportunity to specify the limitations or require-
ments of an API in terms of its execution environment.

From a semiotic engineering perspective, the main signs
used by API designers in order to send their message to users
are method signatures, return values for methods and other
related operations, such as insertion and removal from collec-
tions (dynamic signs), and the textual description. However,
there can be some extensions in order to make this communi-
cation more effective, e.g., better code examples, methods to
test consistency, and formal specifications. From a cognitive
perspective, it might be possible to provide interesting in-
sights regarding this particular design, e.g., a hidden depen-
dency between classes in the API, viscosity, and premature
commitments, as these are not obvious at first, especially to
novices.

Many defects of software development, recognized by semi-
otic engineering, are shown by Afonso et al. [5] that are
due to poor communication among developers (designers
and programmers). However, we believe that the most im-
portant result of the research, not clear at first glance, is
their categorization of several communication problems in
software development, each of which can be resolved by dif-
ferent theories of HCI. Furthermore, the research attempts
to show that semiotic engineering can be considered as a
powerful theory in the domain of interaction, which might
be between two humans or between a computer and a hu-
man. It may be understood that all artifacts in software
development can be considered as mediation between their
creators and users. Therefore, there should be comprehen-
sive metacommunication strategies to be used by designers
so as to provide all stakeholders with needed information in
artifacts.

The research conducted by Afonso et al. [5] is a start
for future research and it does not give more detailed in-
formation about how to create these kinds of metacommu-
nication. Another thing worth mentioning is that semiotic
engineering might not have a concrete solution for problems
that it discovers. However, it has the potential to be ex-
tended into the domain of problem solving. For example,
researchers working in the domain of software documenta-
tion and maintenance may use rich conceptual definitions
of metacommunication so that they change the structure
of the current format in the documentation. Moreover, this
potential may also be used for changing the nature of graph-
ical and textual modeling languages used for communication
among stakeholders.

3.3 Communication in Better Description
HCI developers are responsible for creating suitable user

interfaces, and software engineers develop software systems
to cover the required functionality and all other necessary
requirements. Both groups start their work from the stated
requirements but with different purposes. This can pose
a big communication challenge between these two groups
when system-user interaction is poorly understood. Below,
we discuss a research project that focuses on how a tool
based upon semiotic engineering can bridge the gap.

Modeling Language for Interaction as Conversation (MoLIC)
has been discussed in [10, 11, 22]. MoLIC is a modeling lan-
guage for HCI based upon semiotic engineering, and is an
extension to UML diagrams with the purpose of removing
some existing ambiguities in models of software systems de-
veloped using UML. The ambiguities arise because UML
does not have an acceptable coverage of user interaction
modeling.

It is pointed out that user interaction diagrams should be
considered as a blueprint of the system. Such a blueprint
could be used as a reference point for global design deci-
sions, and would be an additional resource for deriving both
HCI and software engineering models. The blueprint can be
enhanced by MoLIC because it adopts the HCI theory and
provides us with an ontology for describing and evaluating
relevant HCI phenomena, always keeping the focus on the
quality of use of the proposed solution.

According to the proposal [10], modeling should be done
after use case elicitation and specification. Then, class di-
agrams can be created or improved by detailed interactive
information obtained from a MoLIC model. The advantages
of using MoLIC in this part of the process is that no system
decomposition needs to be made or revised before this step,
and thus the cost of changes remains low. Furthermore, de-
signers will be motivated to find and correct problems in
these information sources, such as inconsistencies and in-
completeness.

The paper reveals how theories in HCI can help software
developers to build comprehensive models for software sys-
tems. On the other hand, it shows how it is possible to
combine HCI and software modeling with each other. The
research implicitly shows that the lack of good interaction
modeling diagrams can damage communication among de-
velopers of software systems. This is possible because soft-
ware developers need to be able to explore such models to
understand the whole system.

In our point of view, enhancements could be made if the
authors had created a mapping from MoLIC to the UML
extensions mechanism, because MoLIC has a good theory
background, but its technical structure is not strong enough
to be chosen as a good combination for UML. The profile ex-
tension of UML could be used to cover MoLIC concepts. In
that case, it may increase usability and also easy acceptance
of the concept in software engineering.

3.4 Communication in Testing
Testing usability is a key task in both HCI and software

engineering. Engineers utilize various techniques and crite-
ria in this process. Comprehensive testing includes check-
ing all requirements from HCI and software engineering per-
spectives. The research done by Schilling [26] looks at this
challenge (how to test systems from both perspectives) by
proposing a software development method inspired by semi-
otic engineering.

An Interactive System (IS) development method is pro-
posed by Schilling [26] for performing usability tests in ear-
lier stages of software development, based upon the integra-
tion of concepts from models used in usability, semiotics,
and software engineering. Three major engineering phases
are considered for this purpose. The first one, using meth-
ods from usability engineering, supports gathering informa-
tion and verifying and validating user interfaces. In this
phase, several user interface alternatives from user interface

18

Authorized licensed use limited to: University of Waterloo. Downloaded on August 04,2024 at 18:11:30 UTC from IEEE Xplore. Restrictions apply.

requirements models should be derived. These models ex-
press the need, preference, and constraints of both users and
clients, and are obtained from qualitative and quantitative
research. Based on the obtained results, all user interfaces
will be then evaluated. The second phase follows standard
software engineering testing approaches, testing IS after the
execution of the implementation and integration activities.
The last phase is semiotic engineering, which tests IS us-
ability with real users in the real context of use. This phase
allows developers to test the interactivity and communica-
bility between the user and system to investigate how the
user interface affects users’ activities and how they achieve
their goals through the user interface.

Integration of models belonging to three engineering do-
mains brings advantages that can be viewed from two per-
spectives. From the users’ point of view, it can result in de-
creased learning time and increased user satisfaction. From
the developers’ point of view, it can be used to improve
communication among developers to help them perform us-
ability test tasks in an efficient manner by using the same
vocabulary and artifacts.

Schilling’s research [26] shows the usability of semiotic
engineering in the software development process. By con-
sidering semiotic engineering explicitly as a final phase in
usability testing, it is revealed that the theory can provide
acceptable feedback on usability problems. On the other
hand, the nature of the proposed process can yield a good
sign of the application of semiotic engineering in the im-
provement of software development processes.

Furthermore, the lack of good metacommunication among
different models leads to more time spent on developing
a software system. The combination of various models in
Schilling’s research [26] is a kind of communication that pro-
vides automatic test generation. According to this simple
proposal, we should extend the concept of communication
in different ways to get maximum benefits from different
models created during the software development and user
interface design.

Schilling et al. [26] claimed good automatic test gener-
ation, but it cannot be observed in the data available in
the paper. Moreover, the description for phases is rather
abstract, causing the reader not to understand the exact
advantages and disadvantages of the proposed process.

4. OUR PERSPECTIVE
In this section, we discuss how semiotic engineering may

be used to evaluate and improve communication between
producers and consumers in software engineering. We focus
on some challenge in UML which might be either discovered
or improved by having a semiotic engineering perspective.
Indeed, the goal is to express how semiotic engineering can
approach the challenges existing in software engineering.

4.1 Role of Semiotic Engineering
The focus of semiotic engineering is on communication,

especially computer-mediated designer-user communication.
It points out that rich communication should be provided
by one-shot messages which designers give to their users
through the media they produce. This concept is power-
ful because several things around us have at least a designer
(producer) and a user (consumer), so the theory can be ap-
plied to several other cases as well. Therefore, software ar-
tifacts such as models can also be viewed as one of these

cases.
Unfortunately, it is hard to find a theory in software en-

gineering to aim at communication. This stimulates the
question in our minds regarding how we can expect good
communication among software artifacts while we do not
know whether or not there are enough data, symbols, and
structures in artifacts to facilitate such communication.

Software artifacts are created in the process of software
development and their producers are goal-oriented. This
means that they primarily attempt to satisfy software de-
velopment requirements and pay little attention to items
such as:

∙ how artifacts will be used in the future;

∙ how easy artifacts are to interpret;

∙ how artifacts will reveal their designers’ hidden pre-
sumptions;

∙ how much cognitive work artifacts will put on the users

Therefore, it is necessary to adopt a theory that covers
these questions by providing a method for evaluation and im-
provement. We can propose that there should be a method
to evaluate software artifacts. This method will finally be
extended to a concrete framework that allows developers
to do tradeoff analysis. The core of the method should be
prepared and covered by semiotic engineering theory. For
example, there is a method in [16] used to evaluate CSMod
tools and it is a combination of semiotic engineering and
CDN. In the method, it is necessary to consider software
engineering criteria to evaluate the effectiveness of artifacts
for having rich communication. Since cognition is a char-
acteristic of artifacts, the positive and negative effects of
cognitive notations in software artifacts should also be in-
volved. This should get more attention because measuring
those effects may depend more on the context.

It can be seen how following the concept of communi-
cation and semiotic engineering provides us with questions
and partial answers to get the final answer which can be a
framework in this case.

4.2 UML and Semiotic Engineering
In order to figure out the potential relationship between

UML and semiotic engineering, we focus on some questions
that may be answered by it. Most of the questions are chal-
lenging and need to be explored to a considerable extent,
so as to find more concrete answers. However, the questions
show that UML needs to be rechecked based upon HCI theo-
ries, especially semiotic engineering. This rechecking should
be done more in the direction of usability challenge.

In our discussion, UML is considered in two dimensions.
The first dimension is about UML models as software ar-
tifacts whose producers are software designers, and whose
consumers are software stakeholders. This dimension is sup-
ported to some extent by methodologies, but it is hard to
find a concrete theory that clearly specifies the nature of
these artifacts. The second dimension is about communica-
tion between model developers and UML itself. Indeed, in
the second dimension, producers are UML designers (e.g.,
researchers who work on extending UML meta-model) and
consumers are software engineers who use UML for software
development. There is a gap in this dimension because com-
munication between designers of UML and its users has not

19

Authorized licensed use limited to: University of Waterloo. Downloaded on August 04,2024 at 18:11:30 UTC from IEEE Xplore. Restrictions apply.

been defined very well; at least we do not see such commu-
nication.

UML is designed and developed mainly by the Object
Management Group (OMG). It is used in different areas and
most of its users are developers. Developers need to com-
municate with UML tools so that they can model the target
system. If there is communication between developers and
tools, there should be a method or theory to support it in
an appropriate way.

In the context of model communication, consumers are not
typical information technology (IT) users; they are software
developers. Typically, we talk about UML tools for provid-
ing better communication among developers using UML, but
it might be possible to have some other factors, which play
hidden roles (e.g., the nature of models or diagrams). Cur-
rently, there is a tendency in software research communities
that UML has the necessary expressiveness for communica-
tion, but in practice UML is not being used in their projects
[23] or the levels of regular usage of UML components are
not as expected [15]. We think that one of the reasons for
this issue can be due to communication issues. This can be
clarified by the fact that it has been verified based on experi-
ences, psychology, science, and engineering that modeling is
beneficial, so MDSD is the right approach. Furthermore, de-
velopers believe in modeling but do not use UML. It should
be pointed out that modeling can be textual and graphical,
so the issue may not be just about notations and graphical
elements used for UML.

We believe that UML evaluation should be separated from
its tools and this can be achieved by using semiotic engineer-
ing. There are lots of tools that support UML, so the selec-
tion of tools for the study can affect the final results. The
evaluation should be based upon concrete syntax, structure,
and cognitive effects. If UML is evaluated based on tools,
core communication challenge in the nature of UML cannot
be found.

Another interesting subject that has been explored in HCI
is whether reducing cognitive load has a positive effect on
usability and learning. The designers of UML, we believe
did not pay much attention to cognition, focusing instead
on having strong structure and coverage. However, they
should consider that UML models are created by users and
are interpreted by computers and humans. Therefore, the
cognitive dimension of UML should be studied and modified
to enable better usability. The following are examples of
topics that could easily be studied by semiotic engineering:

∙ What is the extent to which specific details should ap-
pear in class diagrams such as empty boxes when there
are no attributes or methods to display, or mandatory
type and visibility information?

∙ To what extent can specific diagrams, like state ma-
chines and class diagrams, be used together?

∙ What is the cognitive load of various notations?

In general, the theory can help UML designers to play
their role as legitimate interlocutors.

As seen, following the theory challenges UML and some-
how provides guidelines which can be investigated and ap-
plied to UML. This exposes the fact the semiotic theory has
the potential to be applied to software modeling languages,
but there is still a need for more studies to be done in or-

der to make the theory available for software engineering in
general.

5. CONCLUSION AND FUTURE WORK
In this paper, we explored research contributions of semi-

otic engineering to software engineering in general and to
modeling in particular. We pointed out why the combina-
tion of semiotic engineering with different concepts of soft-
ware engineering should be considered. We explored some
the implicit and explicit contributions and drawbacks of the
approach. Our key point is that semiotic engineering theory
can be beneficial in software engineering because it focuses
on communication, which is also central to the whole process
in software engineering.

Furthermore, this paper proposed initial ideas about the
use of semiotic engineering theory along with other theories
as a method to evaluate and improve software artifacts as
computer-mediated communication between producers and
consumers. The paper discussed certain challenges of UML
that can be explained with and explored by semiotic engi-
neering. Although there is no concrete framework or theory
proposed so far for this purpose, it shows how the semi-
otics perspective on the challenge of software engineering
can open new thoughts and solutions.

A good direction for future work would be to obtain a
more concrete interpretation about the use of semiotic en-
gineering theory in software engineering. This can be done
by exhaustive study of research interaction between semi-
otic engineering and software engineering. Another direc-
tion would be to create a concrete method for evaluating and
improving software artifacts based on semiotic engineering,
cognitive dimensions, and software engineering theories.

6. REFERENCES
[1] The science of communication studied through the

interpretation of signs and symbols as they operate in
various fields, esp. language. In Oxford English
Dictionary. 2003.

[2] ARIS Express Free Modeling Software.
http://www.ariscommunity.com/aris-express, 2016.

[3] Business Process Model and Notation (BPMN).
http://www.omg.org/spec/BPMN/, 2016.

[4] Unified Modeling Language (UML)- Object
Management Group.
http://www.omg.org/spec/UML/, 2016.

[5] L. Afonso, R. Cerqueira, and C. de Souza. Evaluating
application programming interfaces as communication
artefacts. In Psychology of Programming Interest
Group Annual Conference, pages 151–162, 2012.

[6] A. Al-Rawas and S. Easterbrook. Communication
Problems in Requirements Engineering: A Field
Study. In Proceedings of the First Westminster
Conference on Professional Awareness in Software
Engineering, Royal Society, London, 1996.

[7] C. Baier and J.-P. Katoen. Principles Of Model
Checking. MIT Press, 2008.

[8] S. Beydeda, M. Book, and V. Gruhn. Model-Driven
Software Development. Heidelberg: Springer, 2005.

[9] A. Blackwell and T. Green. Notational systems-the
cognitive dimensions of notations framework. In HCI
Models, Theories, and Frameworks: Toward a

20

Authorized licensed use limited to: University of Waterloo. Downloaded on August 04,2024 at 18:11:30 UTC from IEEE Xplore. Restrictions apply.

Multidisciplinary Science, pages 103– 134, San
Francisco, 2003.

[10] M. de Paula and S. Barbosa. Investigating the role of
a model-based boundary object in facilitating the
communication between interaction designers and
software engineers. In 6th international conference on
Task models and diagrams for user interface design,
pages 273–278, 2007.

[11] M. G. de Paula, S. D. J. Barbosa, and C. J. P.
de Lucena. Conveying human-computer interaction
concerns to software engineers through an interaction
model. In Latin American conference on
Human-computer interaction, pages 109–119, New
York, New York, USA, 2005. ACM Press.

[12] C. de Souza. Semiotic Engineering - A New Paradigm
for Designing Interactive Systems. The Past and
Future of Information Systems: 1976-2006 and
Beyond SE - 21, 214:231–242, 2006.

[13] C. S. de Souza. The semiotic engineering of
human-computer interaction. The MIT Press,
Cambridge, Massachusetts, London, England, 2005.

[14] C. S. de Souza and C. F. Leitão. Semiotic Engineering
Methods for Scientific Research in HCI. Princeton:
NJ. Morgan & Claypool, jan 2009.

[15] B. Dobing and J. Parsons. How UML is used.
Communications of the ACM, 49(5):109–113, 2006.

[16] J. J. Ferreira and C. S. D. Souza. Communicating
ideas in computer-supported modeling tasks : A case
study with BPMN. In HCI International 2013 -
Human-Computer Interaction, pages 320–329, 2013.

[17] J. P. Gee. An Introduction to Discourse Analysis:
Theory and Method. London: Routledge, 2005.

[18] E. Hutchins. Cognition in the Wild. Cambridge,
MA:MIT Press, 1995.

[19] K. Kuutti. Activity theory as a potential framework
for human-computer interaction research. Context and
Consciousness: Activity theory and human-computer
interaction, Cambridge: MIT Press, pages 14–44,
1995.

[20] I. R. McChesney and S. Gallagher. Communication
and co-ordination practices in software engineering
projects. Information and Software Technology,
46(7):473–489, jun 2004.

[21] B. Meyer. Applying ”design by contract”. Computer,
25(10):40–51, 1992.

[22] M. G. D. Paula, S. D. J. Barbosa, C. J. P. D. Lucena,
D. D. Informática, and R. M. D. S. Vicente. Relating
Human-Computer Interaction and Software
Engineering Concerns : Towards Extending UML
Through an Interaction Modeling Language. In
Closing the Gaps: Software Engineering and
Human-Computer Interaction, pages 40–46, 2003.

[23] M. Petre. UML in practice. In Proceedings -
International Conference on Software Engineering,
pages 722–731, Piscataway, NJ, USA, may 2013. IEEE
Press.

[24] R. E. D. F. Pierre Bourque. Guide to the Software
Engineering Body of Knowledge Version 3.0
(SWEBOK Guide V3.0). IEEE Computer Society,
2014.

[25] Samuel M. Scheiner and Michael R. Willig. The
Theory of Ecology. University of Chicago Press, 2011.

[26] A. Schilling, K. Madeira, P. Donegan, K. Sousa,
E. Furtado, and V. Furtado. An integrated method for
designing user interfaces based on tests. In Proceedings
of the 1st International Workshop on Advances in
Model-based Testing, A-MOST ’05, pages 1–5, New
York, NY, USA, 2005. ACM.

21

Authorized licensed use limited to: University of Waterloo. Downloaded on August 04,2024 at 18:11:30 UTC from IEEE Xplore. Restrictions apply.

