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Abstract Traits, as sets of behaviors, can provide a good
mechanism for reusability. However, they are limited in
important ways and are not present in widely used program-
ming and modeling languages and hence are not readily
available for use by mainstream developers. In this paper,
we add UML associations and other modeling concepts to
traits and apply them to Java and C++ through model-driven
development. We also extend traits with required interfaces
so dependencies at the semantics level become part of their
usage, rather than simple syntactic capture. All this is accom-
plished in Umple, a textual modeling language based upon
UML that allows adding programming constructs to the
model. We applied the work to two case studies. The results
show that we can promote traits to the modeling level along
with the improvement in flexibility and reusability.

Keywords Reusability · Traits · Modeling · Umple · UML

1 Introduction

Reuse has long been an important objective in software
engineering [31]. In this paper, we demonstrate enhanced
mechanisms for reuse, building on the concept of traits
[52]. We show how traits can be extended to incorporate
deeper semantics and modeling abstractions such as UML
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associations. Furthermore, we demonstrate how this can be
accomplished for popular programming languages.

Research in software reuse has brought higher-level lan-
guages, components, generative methods, new architectures,
and domain engineering [8,23,39]. For the majority of these,
abstraction and inheritance play particularly important roles.
Inheritance shows itself in various forms such as single
inheritance, multiple inheritance, and mixins. However, these
variations suffer from conceptual and practical problems.
For instance, there is a troublesome situation named the
“diamond problem” or “fork-join inheritance” for multi-
ple inheritance [17,22,49,53]. For mixins, there are also
problems of linear composition, dispersal of glue code, and
fragile inheritance [52]. Linear composition expresses that
we may find a situation in which the total order of mix-
ins does not exist. Disposal of glue code indicates that for
conflict resolution, sometimes developers need to modify
the mixins, introduce new mixins, or use the same mixin
twice.

In order to overcome these problems, the concept of traits
was introduced by Schärli et al. [21,52]. A trait, in its original
form, is a group of pure methods that serves as a build-
ing block for classes; it is a simple but powerful unit of
code reuse. Traits can be used to structure object-oriented
programs in a compositional manner. They have been imple-
mented natively in programming languages such as Squeak
[28] and PHP [54].

Before proceeding, we want to clarify that in this paper
we are not talking about the semantically distinct notion in
C++ called traits classes [24,38]. These are as small objects
which carry information used by other objects to determine
implementation details. For example, they can be used to
indicate whether or not a type is “void” inside a C++ program.
The use of the term ‘traits’ in this paper follows the usage of
the broader object-oriented literature.
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Several research projects have extended the original con-
cept of traits [9,11,18,20,35,41,44,45,60]. The majority of
these projects have involved either applying traits in differ-
ent languages or else showing new applications of traits.
Meanwhile, model-driven technologies are making inroads
into the development community, albeit slowly. Modeling
abstractions such as state machines and associations pro-
vide new opportunities for reuse and can be combined with
inheritance for even greater reusability. However, the issues
with inheritance described earlier apply also when these new
abstractions are inheritable units; this suggests that traits and
models ought to be able to be synergistically combined.

The current situation is that most developers are unable to
use traits in their designs and obtain the benefits of traits’ flex-
ibility because they are not readily available in mainstream
programming languages such as C++ and Java, or modeling
languages such as UML. As a result, software systems have
a greater amount of duplication than they otherwise might.
In order to tackle the indicated issues and provide traits with
advanced features, we have extended classic traits in three
ways:

(a) We allow them to include modeling elements, most
particularly UML associations, state machines, and
constraints. In this paper, we limit our discussion of mod-
eling abstractions to associations.

(b) We allow developers to specify required interfaces that
clients of traits must implement, extending the preex-
isting concept of required methods. Required interfaces
force clients of traits to implement those interfaces in
order to use a particular trait. Designers can either build
hierarchical required interfaces for better consistency
and more reusability or use already-existing interfaces
to build needed traits.

(c) We enable traits to be used in languages such as Java
and C++.

Taken together, these enhancements allow traits to be used
in mainstream development by both modelers and program-
mers. Enhanced traits can be used to help build libraries of
reusable models or code and can reduce duplication and acci-
dentally duplicated defects.

We demonstrate these capabilities by applying them to
Umple [4–7,33], which is a textual modeling language and
permits embedding of programming concepts into models.
In our research, we are not trying to introduce traits into
the UML (which is a graphical language), in part because
we can reach greater levels of expressiveness in a textual
modeling notation. Umple follows UML semantics, but has
many features such as mixins and aspects that leverage its
textual form. Traits are another such text-oriented feature.

The novelty of our research can be summarized as (i)
we brought the concept of traits to the modeling level and

extended it with the modeling concepts in order to enable
its use in the model-driven development context; (ii) we
have created a textual syntax for traits in that modeling con-
text; and (iii) we have a working model compiler and have
demonstrated the use of traits in real systems created from
model-generated code.

The rest of this paper is organized as follows. Sec-
tion 2 expands on the motivation for our research. Section 3
describes the Umple technology we have used to implement
our approach. The basic features of classic traits in addition
to our extensions are described in Sect. 4. We focus on eval-
uation of the proposed features through two case studies in
Sect. 5. Work related to our research is presented in Sect. 6.
Section 7 depicts some of our research challenge. We discuss
reusability arising from traits at the modeling level in Sect. 8.
Finally, we present conclusions and future work.

2 Motivation

Modeling elements, e.g., state machines and associations, are
reusable elements and can be inherited through the classes in
which they are available. This means that they suffer from the
same inheritance difficulties as other constructs found in pro-
gramming languages such as methods. The concept of traits
has shown in programming languages that they can over-
come some of these difficulties. We wanted to explore their
usefulness in modeling languages, to see if they could offer
the same benefits—a way to better modularize and improve
reuse, and a way to solve some of the problems surround-
ing avoidance of multiple inheritance. Furthermore, if traits
are to be used in modeling, their syntax and semantics need
to mesh well with other modeling elements. We wanted to
explore the effect of incorporating model-level constructs
such as associations into traits.

On the other hand, there is no support for traits in most
popular languages such as Java and C++, so we wanted to
investigate the ability of implementing model-based traits
in these languages. In other words, we wanted to explore
whether or not traits can be a part of platform-independent
models and be available in platform-specific models as well
without concerns about not having native support for traits
in those languages.

3 Umple

In order to explore the notion of model-level traits and
show feasibility of the features and extensions, we have
implemented them in Umple [4,56]. Umple is an open-
source modeling tool and programming language family
which enables us to have what we call model-oriented pro-
gramming. It brings abstractions such as associations, state
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machines, and constraints derived from UML [59] to object-
oriented programming languages. It also allows developers
to use aspect orientation, design patterns, tracing, and now
traits at the modeling level without worries about their real
implementation in different target languages. All concepts
in Umple are defined textually, and the textual language fol-
lows the syntactic convention of C-family languages. Despite
begin textual, Umple also provides a way to define and rep-
resent them visually. A cloud-based interface of Umple can
be found at [57] which covers both textual and graphical
representation. There is much published literature on Umple
[5–7,33], so we provide the following limited overview to
allow the reader to understand the notation in this paper.

Listings 1–10 show examples of Umple. The primary
top-level entities are classes, interfaces, and traits. Each
such entity is declared using a keyword (‘class’, ‘inter-
face’, or ‘trait’) followed by the name of the entity and then
matching braces surrounding a series of elements. The ele-
ments inside the top-level constructs can include attributes
(declared in a manner similar to variables, but implying addi-
tional semantics), methods (declared as in other C-family
languages), associations, constraints, isA (generalization)
directives, stereotypes, and state machines. An example of
a class with an association is:

class Club {0..1 -- * Person member;}

The 0..1 and * are multiplicities as in UML. The word
‘member’ is an optional role name given to the association.
The ‘–’ means a bidirectional association; associations nav-
igable in one direction only would be shown as ‘->’ or
‘<-’. A constraint is a Boolean condition surrounded by
square brackets. An isA directive specifies generalization
(single inheritance) or interface implementation. The word
‘isA’ is followed by the superclass and/or interface(s). Umple
adopted this convention to allow designs to easily change
from one form of inheritance to another. As we will see, we
adopt the same notation for trait inclusion.

4 Details of the approach

In this section, we first explain (in Sect. 4.1) the already-
existing features of traits that come from their base in
programming languages. Afterward, we explain our con-
tributions to traits in terms of associations and required
interfaces (in Sects. 4.2, 4.3 ). We initially provide very sim-
ple abstract examples illustrating existing features of traits,
and our own enhancements. Then, to fully explain the use of
our enhanced traits in the context of a real system, we describe
the design of a graphical system based on traits in Sect. 4.4 .
Finally, Sect. 4.5 presents various automatic code generation
mechanisms for traits and describes our own implementation.

As we mentioned previously, we are not purporting to add
traits to UML. We are introducing them as a textual model-
ing concept in the Umple language that strongly aligns with
UML but is not UML itself. That said, we have created a
graphical representation to help visualize the traits. This is
not intended to be a proposed UML extension, or even a for-
mal contribution to the paper; it is merely intended to help
explain the use of traits and help readers to understand them.
In our approach, diagrams are generated and not intended to
be drawn using a drawing tool. We do not make any claims
about whether it would be usable or useful to edit the dia-
grams or use them to create traits in models.

4.1 Basic trait capabilities

As originally introduced, traits consist of sets of provided
methods and required methods [51,52]. Clients of a trait
declare they use the trait, in which case the contents of the
trait’s provided methods become logically part of the client.
The provided methods have access to functionality in these
required methods of clients. Clients, which can be either other
traits or classes, must have their own implementations of
each of the required methods. Access to any of the clients’
attributes has to occur through accessor methods (i.e., set and
get methods, which form a subset of the required methods).

If the client of a trait is a class, also called a final client,
that class must satisfy the required methods either by itself
or by inheritance from its superclasses. Final clients can use
any number of traits and have to satisfy all required methods
of all used traits.

When the client of a trait is another trait, also called a com-
posed trait, there are two ways by which required methods
of the composing trait can be satisfied. Either the composed
trait will satisfy them by its provided methods or else the final
client of composed trait will satisfy them. When a composed
trait does not satisfy required methods of the composing
traits, those required methods become part of its own required
methods. Determination of whether a required method is sat-
isfied in a client is performed by matching method name,
return type, and parameters; visibility such as public and pri-
vate is not relevant.

Listing 1 and Fig. 1 illustrate these cases. In Umple, traits
are defined by the keyword “trait”. Trait attributes and pro-
vided methods are defined similarly to how attributes and
methods are defined in classes (with visibility, name, return
type, parameters, and body). Provided methods, however,
cannot be abstract. If methods are defined as abstract, they
are considered to be required methods.

There is support for automatically drawing diagrams
incorporating traits in Umple. The diagram representation
is similar to class diagrams in UML, but there are two sec-
tions for methods. The right section shows required methods,
while the left section shows provided methods. Umple also
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class Class1{
void method3(){/*details omitted*/ }

}
class Class2{
isA Class1; 
isA Trait2; 
void method2(){/*details omitted*/ }

}
trait Trait2{
isA Trait1; 
abstract void method3();
void method1(){/*details omitted*/ }
void method2(){/*details omitted*/ } 

} 
trait Trait1{
abstract void method1();
abstract void method2(); 
void method4(){/*details omitted*/ } 

}

Listing 1. Satisfactions in traits 

Fig. 1 The diagram corresponding to Listing 1

provides a mechanism to visualize the system as a normal
class diagram after the traits have been applied or ‘flattened’.
Developers can easily switch between these two views to
have better understanding of the system design.

In Listing 1, there are two classes Class1 (lines 1–3) and
Class2 (lines 4–8), and two traits Trait2 (lines 9–14) and
Trait1 (lines 15–19). Class Class2 is a subclass of class Class1
(line 5) and uses the composed trait Trait2 (line 6). Trait
Trait2 uses the composing trait Trait1 (line 10) and has one
required method method3() (line 11) and two provided meth-
ods method1() and method2() (lines 12–13). Trait Trait1,
which is a composing trait in this example, has two required
methods method1() and method2() (lines 16–17); one pro-
vided method method4() (line 18). Required methods of trait
Trait1 are satisfied by provided methods of trait Trait2. In

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

class Class1{
isA Trait1, Trait2; 

}
trait Trait3{ 
public void method1(){/*details omitted*/ }
public void method2(){/*details omitted*/ }

}
trait Trait1{
isA Trait3; 

}
trait Trait2{
isA Trait3; 
public void method2(){/*details omitted*/ }

}

Listing 2. Conflicts when using traits 

addition, the required method method3() of trait Trait2 is
satisfied by the method in superclass Class1.

When a composed trait is used by a class, there is a situ-
ation in which certain required methods of composing traits
can be satisfied by both the class and the composed trait. In
this case, satisfactions (or implementations) that come from
the class will take priority and be considered the valid ones for
those required methods. In Listing 1, for instance, required
method method2() of trait Trait1 is satisfied by the provided
method of trait Trait2 and the method of class Class2. In this
case, the provided method of trait Trait2 will be disregarded.
Therefore, the result of the single inheritance and using a
trait for class Class2 is four concrete methods method1(),
method2(), method3(), and method4() in which concrete
method method2() of trait Trait2 does not play any role.

Using traits is not always a straightforward mechanism,
and sometimes there are conflicts. Provided methods are
the main reasons for conflicts when they appear in clients,
derived from different traits and hierarchy levels. If a method
with the same signature comes to a client from two differ-
ent traits, it is considered as a conflict and must be resolved.
However, if the method comes from two different traits but
with a common source (i.e., both different traits use a com-
mon third trait), it is not considered as a conflict. Conflicts
are detected in our implementation automatically.

Listing 2 illustrates a symbolic example of two cases, in
which one of them results in a conflict and another does not.
Class Class1 uses two traits (line 2), and it, hence, will get
two methods—method1() and method2() (lines 5–6)—twice,
coming from two different traits Trait1 and Trait2. There is
no conflict for method1() because Trait1 and Trait2 get the
same method from a common source (Trait Trait3).

However, this is not the case for the method2() because
this method has been overridden by trait Trait2 (line 13). In
other words, the sources are now not the same. Therefore, in
class Class1, there is a conflict. It is important to note that
there is no graphical representation for this example because
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Umple detects the conflict and does not allow generation of
an inconsistent diagram.

There are two mechanisms to resolve this kind of con-
flict. The first one is aliasing (or renaming), and the second
is removing. Aliasing allows renaming one of the conflict-
ing methods, so the client can have access to both methods.
Removing lets the developer remove one of the conflicting
methods, so it will not be accessible anymore in the client and
hence avoid the conflict. Choosing one of these two methods
depends on the structure of the application and the devel-
oper’s needs. In order to resolve the conflict in Listing 2
through renaming, the following is the Umple syntax that
must replace the syntax in line 2 of class Class1:

isA Trait1, Trait2 < -method2() >;

The minus sign indicates ‘remove’; this will, hence, result
in not having the method method2 (line 13), which comes
from trait Trait2, and just having the method with the same
name coming from trait Trait1. The same conflict can also be
resolved by using renaming in which a new name method3()
will be given to one of the conflicting methods. In addition,
it is also possible to change visibility of the renamed method
in order to restrict access to it. The syntax, which must be
used in class Class1 instead of the line 2, is as follows. This
syntax also makes the renamed method private so as not to
let other classes have access to it.

isA Trait1, Trait2 < method2() as private method2() >;

Traits can also be more general, which is achieved through
template parameters. Template parameters are a technique to
increase the genericity and hence flexibility and reusabil-
ity of various elements. In C++ and Java, one can specify
generic classes, interfaces, and operations [41]. One can
also model UML elements with unbound formal parameters
that can be used to define families of classifiers, packages,
and operations. This feature is also applied to traits to sub-
stantially increase reusability of traits and broaden their
appeal. Currently, template parameters are just supported by
Scala, which is at the implementation level. Our approach,

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

interface Interface1{
void method1();

}
class Class1{
isA Interface1, Trait1; 
void method1(){}
Class1 method2(Class1 data){/*details omitted*/}

}
class Class2{
isA Interface1, Trait2; 
void method1(){/*details omitted*/}
Class2 method2(Class2 data){/*details omitted*/}

}
trait Trait1{
abstract Class1 method2(Class1 data);
String method3(Class1 data) {/*details omitted*/}

}
trait Trait2{
abstract Class2 method2(Class2 data);
String method3(Class2 data) {/*details omitted*/}

}

Listing 3. Traits without template parameters 

implemented in Umple, covers template parameters at the
modeling level and combines these with other modeling
elements such as associations. This combination increases
modularity and reusability to an extent that is not achievable
at the implementation level.

Template parameters can be referred to in required and
provided methods and attributes. Traits can have template
parameters with generic or primitive data types. In Umple,
primitive types include Integer, Float, and String. Generic
types include classes and interfaces. The difference is that
it is possible to put restrictions on bound values of gener-
ically typed parameters. Such restrictions might include a
declaration that the interfaces or classes must be extended
or implemented by bound values. These restrictions are only
available for generic-type parameters because primitive types
cannot implement or extend any other types and so there is
no way of imposing such constraints on them.

Listing 3 and Fig. 2 show an example in which tem-
plate parameters have not been used. In Listing 3, there are
two traits Trait1 and Trait2 each having a method called
method2() but with different return and parameter types.

Fig. 2 The diagram corresponding to Listing 3
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interface Interface1{
void method1();

}
class Class1{
isA Interface1, Trait1<Type = Class1>;
void method1(){}
Class1 method2(Class1 data){ /*details omitted*/}

}
class Class2{
isA Interface1, Trait1<Type = Class2>;
void method1(){}
Class2 method2(Class2 data){ /*details omitted*/}

}
trait Trait1< Type isA Interface1 > {
abstract Type method2( Type data);
String method3( Type data) {/*details omitted*/}

}

Listing 4. Traits with template parameters 

Their provided methods are also essentially identical, but
operating on different implementations of interface Inter-
face1 (Class1 and Class2) through the parameter “data”.
Because of not using template parameters, the design is
required to have two traits in this specific case.

Listing 4 and Fig. 3 illustrate how using templates can
allow us to create a single generic trait to replace the two
traits in Listing 3. A template parameter Type defined in line
14 is restricted to bind to something implementing interface
Interface1. The restriction is applied by the keyword “isA”,
which follows the name of parameter (in a case where there
was more than one restriction, the restrictions would be con-
joined by the symbol “&”). In trait Trait1, parameter Type
is used for return value and parameter types of provided and
required methods. When a generic trait is used in a client
class or trait, it is necessary to bind values for all parameters.
The binding for trait Trait1 occurs in class Class1 (line 5)
and Class2 (line 10). In class Class1, value Class1 has been
bound to parameter Type, while value Class2 has been bound
to it in class Class2.

4.2 Required interfaces

Required functionality of classic traits is defined in terms
of required methods. However, there are shortcomings with
this approach. The first shortcoming is that there is no way
to reuse a list of required methods. For example, consider a
case in which there are traits that happen to have the same set
of required methods but different provided methods. In this
case, there is duplication due to repeated listing of the same
methods. Also, if there are several traits that must always
have the same list of required methods, inconsistency could
be introduced in the design by changing just one of them and
not all.

Listing 5 and Fig. 4 describe an example of this short-
coming. As can be seen, all traits have two common required
methods method1() and method2() (lines 13–14, 18–19,

Fig. 3 The diagram corresponding to Listing 4
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class Class3{
void method1(){/*details omitted*/ }
double method2(){/*details omitted*/ }

}
class Class1{
isA Class3, Trait1; 

}
class Class2 {
isA Class3, Trait3; 
boolean method3(){/*details omitted*/ }

}
trait Trait1{
abstract void method1();
abstract double method2();
float method3(){/*details omitted*/ }

}
trait Trait2{
abstract void method1();
abstract double method2();
float method4(){/*details omitted*/ }

}
trait Trait3{
isA Trait1,Trait2; 

}
trait Trait4{
abstract void method1();
abstract double method2();
abstract boolean method3(); 
float method5(){/*details omitted*/ }

}

Listing 5. Duplication and potential inconsistency 
in required methods 

and 26–27). They also have different provided methods
method3() (line 15), method4() (line 20), and method5() (line
29). The required methods of traits Trait1 and Trait2 must
always be kept the same because we want to have composed
trait Trait3 (line 22), which brings together provided methods
of two traits (line 23). These provided methods must always
achieve their functionality from the same required methods.
Since traits Trait1 and Trait2 are two separate traits and can be
extended separately, there is no way guarantee those required
methods will be kept the same during software maintenance.
In other words, there is the possibility one of those traits
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Fig. 4 The diagram
corresponding to Listing 5
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interface Interface1{
void method1();
double method2();

}
class Class1{
isA Interface1, Trait1; 
void method1(){/*details omitted*/ }
double method2(){/*details omitted*/ }
void method3(){/*details omitted*/ }
float method4(){/*details omitted*/ }

}
class Class2{ 
  isA Trait1; 
void method3(){/*details omitted*/ }
float method4(){/*details omitted*/ }

}
trait Trait1{
abstract void method3();
abstract float method4(); 

  void method5(){/*details omitted*/ }
}

Listing 6. Traits with incomplete set of required methods 

might be modified without applying the change to the other
one.

The second shortcoming appears when we know the
clients of traits and that they must implement certain inter-
faces in order to have a correct implementation for the
required methods. This suggests that it might be a good idea
to put a restriction on clients that specify the interfaces they
must implement. Such a restriction would ensure that traits
are not used in clients that just happen to have methods with
the same signature. This is important because having reusable
elements which work correctly with minimum errors should
be the designers’ responsibility and not the user’s [37]. Later,
we will show a solution to this.

Listing 6 and Fig. 5 depict this shortcoming, in which two
classes Class1 (lines 5–11) and Class2 (lines 12–16) have the
ability to satisfy required methods of the trait Trait1. In addi-
tion, imagine that the correct satisfaction of required methods
depends internally on clients which implement interface
Interface1 (lines 1–4). According to this, trait Trait1 should

Fig. 5 The diagram corresponding to Listing 6

not be used by class Class2, while it has been used. This
gives rise the idea that there should be a mechanism to let
traits specify more precisely what they want.

In traditional traits, there is no straightforward way to
apply a mechanism to avoid this issue. Of course, it can
be done implicitly by defining all abstract methods of inter-
faces as required methods, but again in that case there will be
duplication and the issue of inconsistency. Furthermore, this
makes traits have lots of required methods, which results in
less readable and understandable traits.

In order to address these issues, we extend traits with
required interfaces. Using these, traits can either put extra
restrictions on clients or just manage their required meth-
ods in a more modular and reusable way. Traits may use
already-existing interfaces or new interfaces may be writ-
ten to accomplish the desired modularization. Furthermore,
developers will be able to create a hierarchy of interfaces to
optimize the reusability.

The new design for the example in Listing 5 is shown in
Listing 7 and Fig. 6. There is now a hierarchical design for
required methods in terms of interfaces, making it reusable
and consistent. Traits T1 and T2 now have the same required
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interface Interface1{
void method1();
double method2();

}
interface Interface2 {
isA Interface1; 
boolean method3(); 

}
class Class3{
void method1(){/*details omitted*/ }
double method2(){/*details omitted*/ }

}
class Class1{
isA Class3, Interface1, Trait1; 

}
class Class2 {
isA Class3, Interface2, Trait3; 
boolean method3(){/*details omitted*/ }

}
trait Trait1{
isA Interface1; 
float method3(){/*details omitted*/ }

}
trait Trait2{
isA Interface1; 
float method4(){/*details omitted*/ }

}
trait Trait3{
isA Trait1,Trait2; 

}
trait Trait4{
isA Interface2; 
float method5(){/*details omitted*/ }

}

Listing 7. Introduction of required interfaces to reduce 
duplication and inconsistency 

interface (lines 21 and 25), and if there is a modification in
the required interface, it will be applied to both. Classes C1
and C2 have to implement interfaces I1 (line 14) and I2 (line
17) to be able to use traits T1 and T2.

Meanwhile, the issue described in Listing 6 can be easily
resolved by the extension through adding required interface
Interface1 to trait Trait1. In this case, class Class2, which
does not implement the interface, will not be able to use
trait Trait1 and this is exactly what the designer of the trait
wanted. The whole process of detection and satisfaction is
done automatically in our implementation.

4.3 Associations

An association is a useful mechanism at the modeling level
that specifies relationships among instances of classifiers. An
association implies the presence of certain variables and pro-
vided methods in both associated classifiers. Other methods
as well as traits can hence refer to the implied methods. Since
an association can be seen as a set of implied provided meth-
ods, it would be logically possible to extend the concept of
traits to incorporate associations. However, prior to our work,
there was no such a mechanism in traits.

An association can only be between a class and another
class or between a class and an interface; in other words,
defining an association between two interfaces is not allowed.
This must also be accounted for in the definition of traits. The
reason for this is that associations imply that at least one end

Fig. 6 The diagram corresponding to Listing 7
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class Class1{
0..1 -- * Class2; 
//details omitted.

}
interface Interface1 {
//details omited.

}
class Class2{
isA Interface1; 
//details omitted.

}

Listing 8. An issue with associations among classes 

Fig. 7 The diagram corresponding to Listing 8

must maintain the state of the links between instances. For
unidirectional associations (navigable in one direction only),
only one end maintains this state, so the other end can be
an interface. For bidirectional associations, both ends must
maintain the state, so both ends must be classes.

Having associations in classes is considered as a kind of
limitation on fine-grained reusability because such classes
cannot then be used alone in other systems. This happens
because the other systems also need the associated classes or
interfaces. Furthermore, the nature of associations is defined
based on exact names. When class A, for example, with an
association with another class or interface B is to be used
in a different system, then that system must have a class
or interface with the exact name B. In order to avoid this
issue, we extend traits to have associations with template
parameters.

Listing 8 and Fig. 7 show an example explaining the case
in which a class cannot be reused alone. In class Class1 (lines
1–4), there is a bidirectional association between Class1 and
Class2. Class Class2 (lines 8–11) implements interface I
(lines 5–7). If we would like to use class Class1 in another
system, we have to transfer class Class2 and interface I as
well. There might be a class in the new system that can sat-
isfy all features of class Class2, but we cannot use it because it
is forced to have exactly the same name in the new system. It
is also impossible to change the name of compatible class to
Class2 because there will be inconsistency among elements

1 
2 
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4 
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class Class1{
isA Trait1<RelatedClass=Class2>;
//details omited.
}
interface Interface1 {
//details omited.

}
class Class2{
isA Interface1; 
//details omitted.

}
trait Trait1 <RelatedClass isA Interface1> {
0..1 -- * RelatedClass; 
//details omitted.

}

Listing 9. Reusable associations in traits 

of the new system. In addition, if we change the name and
apply it to all other parts of the system, the new name may
be out of the domain of the system and so create understand-
ing challenges. The same issues related to class Class1 can
happen to class Class2 because it depends on class Class1.

In order to avoid the limitations in Listing 8, we redesign
it with a trait depicted in Listing 9 and Fig. 8. There are again
two classes Class1 and Class2 and an interface Interface1. We
added a trait (lines 12–13) with a template parameter Relat-
edClass restricted to implement interface I. Furthermore, we
added the same association which was in class Class1 in List-
ing 8 to the trait, but parameter RelatedClass was substituted
for concrete name Class2. This association applied to class
Class1 in line 2, in which class Class2 has been bound to
parameter RelatedClass. As a result, the association is avail-
able for both classes Class1 and Class2. In this case, if we
want to use class Class1 in another system, we do not need
to have exactly a class named Class2. We need a class that
implements interface Interface1, and we simply need to bind
it to parameter RelatedClass. The name of the class is not
fixed anymore in this approach, and the proper candidate
from the target system can be used with class Class1. Class
Class2 can be reused independently too because there is no
concrete relationship between it and other elements of the
system.

Another solution that could partially resolve the issue in
Listing 8 would be to establish an association with interface
Interface1. Then, in the new system, the candidate would be
forced to implement interface Interface1. However, in that
case, it would be necessary to change the type of the asso-
ciation from bidirectional to directional, because having a
bidirectional association between a class and interface is not
allowed.

Adding genericity ensures there is no concrete associated
element that needs to be available when traits are used in
different systems. The associated elements will be replaced
with ones that are accessible in the new systems through
binding. Of course, the restriction on types of binding values
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Fig. 8 The diagram corresponding to Listing 9

for the association is achieved by having restriction on para-
meters. There is now no need for exact names when traits are
used. In fact, traits encapsulate associations and when they
are used they apply associations to suitable elements through
parameters.

When an association is defined, an API (set of methods)
is generated in the class to allow such actions as adding,
deleting, and querying links of associations. Traits may use
this API inside provided methods to achieve their needed
implementation. With this approach, we increase cohesion
because we will have more related provided methods inside
traits and reduce coupling at design time because of having
template parameters. Furthermore, the abstraction level of
traits will be increased because we will not use attributes to
establish relationships and instead utilize the more abstract
notion of associations.

Listing 10 and Fig. 9 depict a simple version of the
observer pattern [25] implemented based on traits. As can
be seen in line 7, the concept of subject in the observer pat-
tern has been implemented as trait Subject, which gets its
observer as a template parameter. A direct association has
been defined in trait Subject (line 8) which has multiplicity
of zero or one on the Subject side and zero or many on the
Observer side. This association lets each subject have many
observers, and it also applies the case in which observers
do not need to know the subject. The trait has encapsulated
the association between the subject and observers and then
applies it to proper elements when it is used by a client.

As each subject must have a notification mechanism to let
observers know about changes, there is a provided method

1 
2 
3 
4 
5 
6 
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class Dashboard{
void update (Sensor sensor){ /*implementation*/ }

}
class Sensor{
isA Subject< Observer = Dashboard >;

}
trait Subject <Observer>{
0..1 -> * Observer; 
void notifyObservers() { /*implementation*/ }

}

Listing 10. Observable pattern with traits and their associations 

Fig. 9 The diagram corresponding to Listing 10

notifyObservers() for this. This method obtains access to all
observers through the association. Two classes Dashboard
and Sensor play the roles of observer and subject. Class Dash-
board has a method named update(Sensor) (line 2) used by
the future subject to update it. Class Sensor obtains the fea-
ture of being a subject through using trait Subject and binding
Dashboard to parameter Observer.

4.4 Case study: a geometric system

In this subsection, we present a case study developed to help
illustrate the use of our enhanced traits. The main goals of the
system are to show how our proposed features can be used
and to help the reader appreciate their usefulness. It is impor-
tant to note that we believe traits should be used when they
bring benefits regarding flexibility, reusability, and avoiding
multiple inheritance. It is possible to make more extensive
use of traits, to the point of using them to introduce for every
single method. We have not chosen that style, instead using
traits when they are useful, and using classic object-oriented
design when it already works well.

In Fig. 10, a part of this system’s hierarchy is depicted. We
have simplified the case study for this paper, hiding classes,
leaves, attributes, and methods that are not necessary for the
discussion about traits we provide.
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Fig. 10 The hierarchy of the graphical system

Full code and diagrams of the complete case study can
be viewed in UmpleOnline [57]. In the Load menu, select
the Geometric System. By default a class diagram is shown,
without methods and/or traits. To show methods and traits, go
to the Options menu and click on the appropriate checkboxes.

As shown In Fig. 10, there is a superclass named RootClass
with three subclasses including Canvas, GeometricObject,
and Color. The class Canvas is responsible for drawing
geometric objects, and the class Color keeps the necessary
features related to color. The class GeometricObject is an
abstract class for all geometric objects and has four sub-
classes including Shape2D, Shape3D, Point, and Line. The
class Shape2D is a superclass for two classes, CurvedShape
and Polygon. The class Shape3D is also a superclass for two
classes, Polyhedra and NonPolyhedra. These abstract classes
have their own subclasses (leaves). For example, the classes
Circle, Rectangle, Sphere, and Cube are subclasses of the
classes CurvedShape, Polygon, NonPolyhedra, and Polyhe-
dral, respectively. The class Line is straight, has no thickness,
and extends in both directions without end.

One of the features that the system must have is to allow
comparing two objects (e.g., shapes and color) regarding
being equal or not. We call this the equality feature. For exam-
ple, whether or not two points are equal. Furthermore, the
system must also allow comparing objects regarding being
bigger or smaller. We call this the comparability feature. For
instance, whether or not a cube is smaller than another cube.
There are cases in which we cannot have the comparability
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3 
4 
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trait TEquality<TP1>{ 
   abstract boolean isEqual(TP1 object); 
   boolean isNotEqual(TP1 object){/* impl… */} 
}
trait TComparable<TP2>{ 
   isA TEquality<TP1=TP2>; 
   abstract boolean isLessThan(TP2 object); 
   boolean isLessAndEqual(TP2 object) {/*impl… */} 
   boolean isBiggerThan (TP2 object){/* impl… */} 
   boolean isBiggerAndEqual(TP2 object){/* impl… */} 
} 

Listing 11. The traits related to the equality and comparability 
features 

feature for classes and they must have just the equality fea-
ture. However, all classes that need the comparability feature
must also have the equality feature. For example, points and
lines can merely have the equality feature while a circle must
have both features. In this system, there are also some other
classes that do not need these features (e.g., Canvas).

In order to implement these features, we have designed
two traits named TEquality and TComparable. Their Umple
code is depicted in Listing 11. The trait TEquality provides a
provided method named isNotEqual() and requires a required
method named isEqual(). It also has a template parameter
named TP1 used in the arguments of the required and pro-
vided methods. This feature allows us to have the same or
suitable type for the arguments of methods which are going
to be used in clients. This removes casting of types in the
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Fig. 11 Use of the trait TEquality and TComparable

body of methods and provides static type-checking during
the compilation.

The trait TComparable uses trait TEquality to obtain func-
tionality needed for its provided methods in addition to the
required method named isLessThan(). It provides three pro-
vided methods named isLessAndEqual(), isBiggerThan(),
and isBiggerAndEqual(). It also has a template parameter
named TP2 passed into the parameter of TEquality. In other
words, this trait has one required method in the body and
obtains another one through the trait TEquality. It also has
three provided methods in the body and obtains one through
the trait Equality. To give the exact or proper type to the tem-
plate parameter of these traits, they should be applied to the
exact class or the first common superclass. Therefore, the trait
TEquality is applied to the class Color, Point, and Line, while
the trait TComparable is applied to Polygon, CurvedShape,
Polyhedra, and NonPolyhedra.

Figure 11 shows a part of the diagram in which the class
Color uses the trait TEquality. It implements the required
method of the trait, which is isEqual(). The class Curved-
Shape is abstract and uses the trait TComparable. It does not
have enough information to implement the required methods
of the trait, so it keeps them as abstract methods and forces
leaves to implement them (Circle in this case). It should be
indicated that there also are other ways to design and apply

these traits. For example, the traits TEquality and TCom-
parable could be completely distinct and we would apply
TEquality to the GeometryObject and the trait TComaprable
to other mentioned classes. The key point here is that traits
can give developers more options while designing systems.

Another feature that we want to have is having color and
its related functionality for geometric objects. We also want
to have another color for the edge of shapes. However, there
are some shapes that mathematically do not have edges. We
have designed two traits named TDrawable and TDrawable-
WithEdge for these purposes. The related Umple code is
depicted in Listing 12. The trait TDrawable gives the general
meaning of color to all geometric objects, while TDrawable-
WithEdge provides edge color to appropriate shapes. The
trait TDrawable has an association with the class Color and
does not have any required method. It provides several pro-
vided methods related to color in which three of them are
wrappers for methods in the class Color. The traits TDraw-
ableWithEdge use the trait TDrawable and add provided
methods related to the color of edges. These two traits do
not have any required methods, which shows that it is possi-
ble to consider traits as a mechanism to implement libraries.
To have these feature in the system, the trait TDrawable is
applied to the class GeometricObject because all shapes must
have a color. The trait TDrawableWithEdge is applied to the
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trait TDrawable { 
0..1 -> * Color color; 

   int getRed(){/*implementation */} 
   int getBlue(){/*implementation */} 
   int getGreen(){/*implementation */} 
   void applyTransparency(int p){/*implementation */} 
   void applyPattern(int type){/*implementation */} 
   void applyColorFilter(int f){/*implementation */} 
} 
trait TDrawableWithEdge{ 
   isA TDrawable; 
   int getERed(){/*implementation */} 
   int getEBlue(){/*implementation */} 
   int getEGreen(){/*implementation */}  
   void applyETransparency(int p){/*implementation */} 
   void applyEPattern(int type){/*implementation */} 
   void applyEColorFilter(int f){/*implementation */} 
} 

Listing 12. The traits related to the color feature 

class Shape2D and Polyhedra because instances of the class
NonPolyhedra do not have edges to be colored.

Since the class Canvas should draw geometric objects
along with their color, there should be a mechanism to let
this class know about the changes in the properties so that it
can update the canvas. This feature can be achieved through
the Observable pattern. In order to implement this pattern,
we reuse the trait Subject introduced in Listing 10. The class
GeometricObject uses this trait and assigns the class Canvas
as a binding value to the parameter Observer.

The indicated features so far are general features that other
projects or classes might also want to use. Having them in
terms of traits allows developers to easily reuse them with-
out worries about the complexity of the class hierarchy. We
can easily change or remove the names of provided meth-
ods either because of specifics of the domain or in case of
conflicts.

4.5 Code generation

Model-driven development allows and recommends devel-
opers to model systems abstractly and focus on high-level
functionality without concern for implementation details.
When possible, the goal is to generate implementation code
automatically, a process either called model-to-code transfor-
mation or code generation. One designs systems with abstract
elements in order to focus on business problems instead of
technology, to have fewer errors, and to increase speed of
development.

In this section, we discuss how systems which are mod-
eled using traits can be implemented using automatic code
generation. We will discuss different strategies that depend
on the type of target language, and then describe our own
automatic code generation used by Umple.

Traits were first introduced and implemented in Squeak
[28] and then in other languages such as PHP [54]. These
constitute a first group of languages that have native key-

words or structures for representing traits; their compilers
are aware of traits and can analyze them. A second group
of programming languages such as Ruby [55] and Javascript
[60] supports traits, but without specific keywords for them.
In these cases, developers adapt other structures of the lan-
guage to implement traits. However, several of the most
important languages such as Java and C++ do not support
traits at all. There has been some research toward adding
traits to these kinds of languages, but traits have never
become a part of their standard versions [13,20,35,44,47,
48]. When traits are represented in models, there will be three
options for implementing the modeled systems correspond-
ing to the three groups of programming languages described
above.

The first option is for programming languages that directly
support traits. In this case, automatic code generation is
straightforward because there will be one-to-one mapping
from traits in the modeling level to traits in the implementa-
tion level. It is worth pointing out, however, that currently
these languages do not support associations and required
interfaces as proposed in this paper. Therefore, there are not
direct one-to-one mapping for these concepts.

The second option is associated with programming lan-
guages which do not have a direct keyword for traits but
provide structures used to mimic traits. The implementation
for these languages will be a little bit different than the first
group because there will not be a direct mapping between
traits at the modeling and implementation levels. However,
the mapping will happen conceptually because each trait will
be implemented with the required structures in the generated
language. In this automatic code generation, using best prac-
tices will play the most important rule because we would like
to use the minimum combination of structures and to have as
modular as possible a representation for the implementation
of traits. This would improve the process of understanding of
the final systems for who are code-oriented or need to inspect
the final system.

The final option, for languages not supporting traits at all,
is to directly base code generation on the idea that compil-
ers typically use flattening to inject provided methods into
clients. After the compiler does this, all elements of traits
become treated as real elements of clients, and clients have
access to those elements just like any other elements. Code
generation from model-based traits can do this directly for
programming languages that do not support traits.

This third approach, however, requires greater intelligence
in analyzing the traits at the model level to ensure the validity
of the final systems. As a result, in Umple, the compiler does
considerable analysis of the traits and provides many warn-
ings and error messages when trait syntactic and semantic
problems are identified.

It should be noted that the approach we describe in this
paper implies that there should not be any round-trip model
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transformation. This means that there should be just a direct
transformation from model to code and developers should
not modify the generated code. When there is a need for
modifications, it should be first applied to the model, and
then, the code generation should be reapplied to update
the final system. This approach is just like the standard
approach for compiling a high-level programming language
and is the preferred approach in model-driven development.
Allowing round-tripping (taking modifications of generated
code and applying them to update the model, then regen-
erating the code) would be too complex in the context of
traits.

We have implemented automatic code generation in
Umple. In the generated code, there is a traceable annota-
tion for each provided method which indicates exactly the
name of trait from which this method comes. This also spec-
ifies the other classes in which the methods have been used.
Although there is no need for this in terms of generating a
functional system, it helps when people want to inspect or
certify the generated code.

Finally, in order to show how trait-based examples
indicated in the previous sections can be implemented
in object-oriented programming languages according to
our approach, we depict the standard class diagrams for
them in Figs. 10, 11, 12, 13, 14, 15, 16, 17, 18 and
19 . These class diagrams are generated automatically by
Umple.

Fig. 12 The standard class diagram for Listing 1 and Fig. 1

Fig. 13 The standard class diagram for Listing 3 and Fig. 2

Fig. 14 The standard class diagram for Listing 4 and Fig. 3

Fig. 15 The standard class diagram for Listing 5 and Fig. 4

Fig. 16 The standard class diagram for Listing 6 and Fig. 5

5 Evaluation

In this section, we evaluate our proposal related to having
traits in the model level and transforming them into target
languages while keeping the system’s behavior exactly the
same as the system without modeling. The advantages of
traits associated with better composition and reuse have been
recognized by languages such as Scala [50], Squeak [28],
Perl [42], Fortress [1], and PHP [54]. Identification of traits
is still challenging in this area, and there are manual and
semiautomatic approaches and tools for this purpose [11,34].
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Fig. 17 The standard class diagram for Listing 7 and Fig. 6

Fig. 18 The standard class diagram for Listing 9 and Fig. 8

Fig. 19 The standard class diagram for Listing 10 and Fig. 9

However, there is not yet a comprehensive approach or tool
that can identify traits based on all clues such as method
cancelation [2] or duplication. They were also developed for
specific languages, which makes it difficult to have a system-
atic approach.

According to the goal of our approach, detecting all pos-
sible traits, which can have more effect on reusability and
LoC, is not necessary. Therefore, we just focus on detecting
traits based on the exact duplicate methods. We also give
static metrics and describe traits’ advantages regarding case
studies in our evaluation. We want to indicate that the static

metrics are not the key contribution to the approach or the
main factors of the evaluation.

We have applied our approach to two systems: the Umple
compiler and JHotDraw [29]. The Umple compiler was writ-
ten in Umple, and we use traits directly in it. However,
JHotDraw was written in Java and we had to first transform it
to Umple. We did this through a tool called the Umplificator
which allows us to transform software systems from Java to
Umple [26]. The transformed system retains the same prop-
erties as the original since the Umple compiler transforms it
back to its original target language.

Detection and implementation of traits for our two case
studies were a manual process. Duplicate code (clones and
near clones) were detected using CodePro Analytix [19].
CodePro Analytix is a Java tool for Eclipse developers who
are concerned about improving software quality and reduc-
ing development cost. It provides a feature to find clones, but
was not initially designed to detect traits.

In the first round of the process, we detected methods shar-
ing the same signature and body. Each method was assigned
to a trait, and then, its required methods were discovered.
We followed this approach because we wanted to have fine-
grained traits and then compose them into composite traits.
When the owner of a method had implemented special inter-
faces that were crucial for the methods, we considered them
as required interfaces.

Next, we looked for methods which had (a) the same num-
ber and order of parameters but different types, and (b) the
same body. We again assigned each method to a trait and
discovered the required methods and required interfaces.
Template parameters were added to traits according to the
number of differences in types. Then, names of different
types were replaced with template parameters. When special
restrictions were detected that are needed for binding the val-
ues of template parameters, they were applied to parameters.

Static metrics of these two systems before and after apply-
ing traits are depicted in Tables 1 and 2, respectively. As can
be seen in Table 2, 17 traits were detected for Umple that
resulted in 0.84 % deduction in LOC. In other words, 335
lines of code were saved because of traits. All traits have one
required method and have been applied at least to two places
on average. There are 68 detected traits for JHotDraw, which
resulted in 1.36 % (1062 LOC) reduction in code volume.
Each trait has at least two required and provided methods on
average. The improvement in JHotDraw is more than Umple
because there was more interface implementation in JHot-
Draw as compared to Umple. This is summarized in the fifth
column of Table 1. There are 7.2 % interfaces and 92.7 %
classes in Umple while 5.7 % interfaces and 94.2 % classes
in JHotDraw.

While we were detecting traits in these systems, we made
some interesting observations. Some of these were confirma-
tions of already-made points in other scientific papers, while
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Table 1 Static metrics of
Umple and JHotDraw

LOC (.java) LOC (.ump) Types Percentage by Kinds Methods

Umple 100,613 39,782 1133 7.2 % interface, 92.7 % class 2018

JHotDraw 80,535 77,647 1068 5.7 % interface, 94.2 % class 6893

Table 2 Traits specification for
Umple and Jhotdraw

Traits Required
methods (avg)

Clients (avg) Saved LOC Saved LOC

Umple 17 1.0 2.3 335 0.84 %

JHotDraw 68 2.5 2.1 1062 1.36 %

the remainder is related to our improvements to traits. Firstly,
it was confirmed that code generation is an essential part of
model-driven development. The benefits of traits would not
be present if we were not generating code and were just using
them for documentation, as is often the case for models in
industry [43].

Secondly, having big methods clearly decreases reusabil-
ity. We detected lots of the same code in many methods, but
they were mixed up with other implementation code, pre-
venting us from being able to straightforwardly make those
methods into provided methods of traits. If the methods had
been more fine-grained, we would have likely been able to
create more reusable traits and further reduce the number
of lines of code. This issue was particularly noticeable in
cases where an interface was implemented by several classes.
Thirdly, further refactoring of big methods is likely to lead
to additional traits, hence further code reduction. Fourthly,
as indicated before, we used duplicate methods as a clue for
traits, if we used other factors, we would be able to detect
more traits. Development of new systems, where traits can
be used right from the start, might lead to even greater use
of traits in such systems. We leave the validation of these
additional hypotheses to future research.

Having relatively small 1 % reduction in code volume
through the use of traits in the two reengineered systems
described above may seem to suggest the use of traits might
not be worthwhile. Having code savings is nice, but not neces-
sary for there to be a valid contribution. The benefit of having
the traits goes beyond mere code volume reduction; with the
introduction of traits, we have reduced the risk of errors due to
duplicate code and have potentially improved the understand-
ability of the system. For example, in our evaluation systems,
we found in one duplication case that there was a comprehen-
sive comment regarding the functionality for just one of them
and nothing for others. Therefore, developers, who will read
the clone instance that does not have the comment, would
have to put lots of cognitive effort to understand it.

Finally, our evaluation confirms that traits can be applied
in model- driven software development. In fact, we were able
to model those open-source systems which are not generally
modeled with traits, and provided flexible and reusable ele-

ments (traits) that can provide fine and coarse granularity
of reusability. Moreover, by our model transformation, we
were able to show that if traits are used at the modeling level,
there is no problem regarding their implementation in pro-
gramming languages such as Java.

6 Related work

The term ‘trait’ was first used by Ungar et al. [58] in dynami-
cally typed prototype-based languages, implemented in Self
[32]. Traits were then introduced into dynamically typed
class-based languages by Schärli et al. [52] as a group of
pure methods that serves as a building block for classes and
as a primitive unit of code reuse. That research specified the
preliminary definitions, interpretation rules, structures, and
available conflicts that could happen among traits and classes.
Defined traits could only have required and provided meth-
ods. These are called stateless traits because the traits do
not directly specify attributes and must access data through
methods, also known as ‘glue’ code. They implemented traits
in Squeak [28], an un-typed language and an open-source
dialect of Smalltalk-80. In order to have a realistic evaluation
of traits’ usability, they used traits to refactor the Smalltalk-
80 collection hierarchy as it is implemented in Squeak 3.2. A
graphical representation has been proposed as well to provide
visual representation and better understanding.

The formal definition of traits and their basic properties
were defined in [21]; the authors also modeled the internal
dependencies created by self and supersends so that one can
specify precisely when two classes are equivalent.

Stateful traits [9,10] were introduced to avoid the issue
of incompleteness in stateless traits. Incompleteness causes
classes to have a significant amount of boilerplate glue code
when they use traits. This challenge is resolved by letting
traits define instance variables (attributes). Instance variables
are purely local to the scope of a trait, unless they are explic-
itly made accessible.

Our research takes this work to a further level, adding
modeling concepts, and reducing the amount of glue code
even further. We do support attributes (instance variables
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with associated get and set methods) but with certain rules,
as follows. Firstly, code generated from disjoint traits and
classes cannot give rise to conflicts due to the design of
our compiler. Secondly, if name conflicts would arise in
code generated from traits, our system detects them and
shows warnings to developers, who will normally elect to
change the names of the traits. Thirdly, if Umple gener-
ates code for target languages directly support stateful traits,
there will not be any issues regarding name conflicts in our
approaches.

Having typed trait inheritance is explored in [35,36] in
which an extension called Featherweight-trait Java (FTJ) has
been developed for Featherweight Java (FJ) [27]. The main
goal of the work was to introduce typed trait-based inheri-
tance as a simple way to provide a simple type system that
type-checks traits when imported in classes. This could be
considered as a first step to adding statically typed trait inher-
itance to the full Java language.

Supporting traits in Java also was explored in [44,46]. In
that research, the goal was to explore how it is possible to
resolve barriers of reuse in Java through traits in terms of
a case study of Java Swing. These barriers counted as lack
of multiple inheritance, inaccessible private inner classes,
non-extensible final classes, and synchronized variations. In
addition, traits were directly implemented as an extension to
mini-Java (MJ), a subset of the Java language, by devising a
compiler (TMJC) that works by translation, taking source
extended with traits, and translating it to pure mini-Java.
An environment based on Eclipse for this implementation
of traits in Java was done in [45]. In this, a programmer can
move freely between views of the system with or without its
traits. The advantage of representing traits as classes is that
existing Java development tools can be used.

Murphy-Hill et al. [40] proposed an implementation for
Java based on their study of java.io libraries. In their research,
traits are represented as stateless Java classes. Required meth-
ods are expressed as abstract methods. Classes representing
traits can be used with other classes to produce compos-
ite classes. According to their implementation, a class can
be used both through inheritance and through composition.
This implementation is in contrast with their earlier pro-
posal of type traits [46] in which traits were special program
units.

Attempts in the direction of exploring traits in Java
resulted in the research of Denier [20] in which AspectJ has
been utilized as a subset of aspect-oriented programming
[3,30]. This mechanism could implement most of properties
of traits, but it was not able to provide a full support regard-
ing conflict resolution. The main reason for shortcoming was
lack of fine-grained operators in AspectJ.

XTRAITx, a language for pure trait-based programming,
was introduced in [13]. The research achieves complete com-
patibility and interoperability with Java without reducing

flexibility of traits. It also provides an incremental adapta-
tion of traits in existing Java projects based on Eclipse. In this
implementation, classes play the role of object generators and
types, while traits only play the role of units of code reuse
and are not types. In this research, there are several operations
for traits (as conflict resolution methods) including method
alias, method restrict, method hiding, and method/field
rename.

In our work, we support two of these conflict resolution
methods and would be valuable as future work to apply the
others to our model-based traits. XTRAITx uses model trans-
formation to generate Java code, as we do. However, ours
supports Java and several other programming languages.

Application of traits in software product lines (SPL) has
been investigated in [12]. Traits are used along with records
[16] to model the variability of the state part of prod-
ucts explicitly. In their approach, class-based inheritance
is ruled out and classes are built only by composition of
traits, interfaces, and records. They introduced Featherweight
Record-Trait Java (FRTJ) which ensures type-safety of a SPL
by type-checking its artifacts only once and ensuring type-
safety of an extension of a (type-safe) SPL by checking only
the newly added parts. Our work can be extended to be used
in the context of SPLs.

UML components are a modular and reusable element in
modeling, which having a common terminology with traits.
Components and traits have provided and required interfaces
and can have fine and coarse level of control on them. For
example, they can have one or several methods as required or
provided interfaces/methods. There is no restriction on the
granularity of both. They can be substituted by another one of
their own types if provided and required interfaces/methods
are identical. However, these do not mean that they function
like one another.

We consider the following differences between them
which make traits unique in the modeling level: (a) com-
ponents can be instantiated, but traits cannot because they
are inherently abstract; (b) a UML component may encom-
pass classes, but this is not allowed for traits; (c) we cannot
remove/rename/change visibility of provided interfaces in
UML components, while we can do these operations for pro-
vided methods of traits; (d) we can compile a component and
use its binary version, but we cannot perform this for traits;
(e) internals of components (except provided interfaces) are
hidden for elements that use them, but for traits those inter-
nals are flattened in the elements; (f) there is no concept like
port for traits; and (h) it is possible to use some provided
methods of traits, but when we want to use components, we
should load all provided interfaces.

What the traits in the modeling level are trying to do is
about providing better flexibility regarding reusability. The
features offered by traits are not available in UML compo-
nents. Furthermore, they are some features which are unique
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for components, and they are not available in traits. The rea-
son is that traits are aiming at different purposes.

As can be seen, all of the related work has been either in the
direction of adding traits to programming languages or using
them in new domains. Our approach can be considered to be
at a higher level of abstraction and allows having different tar-
get languages through model transformation. Furthermore,
our online IDE [57] provides two separate views for devel-
opers in which they can see simultaneously traits and their
flattened view in terms of a graphical class diagram.

7 Challenges

There are three categories of challenges regarding our
research: challenges our work will help developers over-
come, challenges we faced when developing traits, and
challenges that might be faced by those trying to use our
traits ideas in models.

7.1 Developers’ challenges our work should help with

The first category of challenges is the technical challenges
we are allowing software engineers to overcome if they use
our approach. Many developers want to avoid multiple inher-
itance for a variety of reasons, yet at the same time reduce
duplication in their model, but there is a lack of techniques
to overcome this if the developer wants to work at the mod-
eling level. Moreover, developers who use traits may want to
define semantics-level restrictions on traits and make them
as a part of traits’ usage. On the other hand, our new fea-
ture regarding having associations inside traits opens a new
design technique which is portable and flexible. For example,
we depicted in Listing 10 how the observable pattern can be
redesigned.

7.2 Challenges we faced in this work

The second category covers the technical challenges we faced
during our research including design and implementation
phases. Our first challenge was to develop a usable syntax for
traits. We had to define the necessary keywords inside Umple,
and there were two options: (1) using specific keywords
for each concept and (2) reusing other keywords available
in Umple. Since the main philosophy of Umple is sim-
plicity, we defined the minimum new keywords and reused
already-existing keywords. For example, instead of having
the keywords “required” and “provided” for required and
provided methods, we consider abstract methods as required
methods and normal methods as provided methods.

The next challenge we faced was about developing seman-
tics of traits in the modeling context. The new semantics
must be compatible with original semantics and be usable

and meaningful at the modeling level. Trait semantics had to
be extended to admit modeling elements as a part of trait defi-
nitions. Exploring the soundness of the approach in numerous
scenarios was challenging. We had to explore the elements’
positive and negative effects and then see whether or not they
are in compliance with the original definition of traits. Most
of incompatibilities came from the fact that finally those ele-
ments must be flattened to clients and there must be minimum
conflict and maximum effectiveness for those elements.

Developing rules that show when traits are correct (and
producing appropriate error messages in other cases) was
also another challenge. We wanted to check the original rules
of traits in addition to the ones we promoted for model-based
traits in an automatic way. This cause use to check both
flattened and normal models. However, it brought a good
mechanism for our implementation in which we can show
flattened and normal model of the final system in an easy
way. Having these two views ought to have a positive effect on
developers regarding understanding of the final system [15].

7.3 Challenges to be faced by adopters

The third category of challenges is those that might be
encountered by adopters of our work. We believe that the
challenges will be minimal.

Since traits provide a layer of functionality sitting on top
of the existing modeling language, they simply allow rational
copying of reusable elements in a controlled way. Previous
research has shown that this can be done with elements such
as methods and attributes. We show how it can just as easily
be done with associations.

Regarding learnability of our concepts, developers would
define traits in a way very similar to how they define classes,
albeit with a few unique details related to traits. Develop-
ers will need to learn the rules of applying traits in various
class hierarchy contexts and how to resolve conflicts through
rename/remove operations. These rules are simple, as indi-
cated earlier in this paper.

Moreover, the syntax has been designed to be straightfor-
ward, and all conflicts are detected automatically by Umple’s
compiler. The compiler helps modelers regarding the con-
flict resolution through concrete examples. In our laboratory,
developers could understand how to use traits in their design
after a 30-min presentation. Of course, an empirical study
ought to be conducted to assess usability of our technique;
this is future work.

8 Discussion regarding reusability

In this section, we discuss how our approach can provide
better reusability. The goal is to show how each part of
our solution along with other preliminary features of traits
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plays its role in software reuse. For this purpose, we will
make connections between specific parts of our approach
and the most common concepts in the majority of reuse tech-
niques: abstraction, selection, specialization, and integration
[14,31].

8.1 Abstraction

Abstraction plays a central role in software reuse so if we
would like to reuse software artifacts effectively, concise
and expressive abstractions are essential [31]. Abstraction
reflects the point that concealment of details and focusing
on the most important factors facilitate reusability. Indeed,
having a high level of abstraction helps us to have more
reusable elements. In our approach, we concentrate on traits
in the modeling level, which is a higher level than traditional
programming. This helps us to put implementation concerns
beside and focus more on reusing functionality. The imple-
mentation concerns will be resolved through automatic code
generation.

We introduce elements to traits that increase both abstrac-
tion and reusability. Required interfaces can be used in the
design of other parts of systems to have or create proper
clients. This helps developers to understand requirements of
traits more easily or put restrictions on clients in a modular
way. Associations are also more abstract than classic code
in which developers have to define instance variables and
implement the necessary APIs.

8.2 Selection

Selection deals with locating, understand, comparing, and
selecting reusable software artifacts. This is covered by the
approach in two levels. Firstly, developers can select proper
traits (e.g., from a repository) according to their need and use
them inside of classes or traits. They may get more under-
standing about traits by looking at either traits’ required
methods and interfaces or the interfaces needed by tem-
plate parameters. Secondly, developers are also allowed to
select from the provided methods of each trait. The power of
this is increased by the fact that Umple lets developers cus-
tomize visibility and names. Renaming provided methods
toward having domain-specific vocabularies helps develop-
ers to have better understanding of the whole functionality
of the system. It is important to mention that customization
is also used for conflict resolution.

8.3 Specialization

Specialization focuses on generalized or generic artifacts
and specializes them by inheritance, parameters, transfor-
mation, constraints, and some other forms of refinement. In
our approach, inheritance is available through the compos-

ing mechanism. It means that traits can extend the whole
behavior of their supertraits (composing traits) and classes
can extend their traits under the flattening mechanism. The
more effective result of specialization can show itself when
the modeling elements of traits (e.g., state machines and asso-
ciations) are specialized in subtraits. For example, when there
is an association in a composing trait and there is the same
association in the composed trait, then multiplicities of the
composed trait will affect the composing one.

Moreover, template parameters allow developers to define
generic traits and specialize generic traits by binding specific
types to parameters. They also let one put restrictions on types
of parameters by defining required interfaces for parameters.
Template parameters are used with associations to provide a
better configuration mechanism to associate clients of traits
with other classes.

8.4 Integration

Integration considers how reusable elements will be inte-
grated into a software system effectively. In other words, how
developers combine a collection of selected and specialized
artifacts into a complete system. This is achieved by know-
ing more about artifacts’ interfaces. In our approach, there
are two complementary ways that developers can understand
traits. The first is required methods and interfaces, which
reveal how a trait can be used in what classes or traits. The
second one is required interfaces for template parameters,
which indicate allowable bindings for the parameters. Fur-
thermore, as a common way of helping developers to know
much about reuse artifacts, we can assign comments to either
traits or each element of traits.

9 Conclusion and future work

This paper proposed and implemented an enhanced mecha-
nism for reuse based on traits. We extended traits to be more
abstract and coherent in order to provide better reusability
and integration with model- driven software development.
Our contributions can be summarized as follows. Firstly, we
extended traits with required interfaces that allow us to have
additional structural restrictions on clients of traits as well as
to reuse already-existing interfaces. Secondly, associations
were added to traits, and these were made adaptable to dif-
ference contexts through template parameters. Thirdly, for
better management of provided methods, a mechanism was
defined which allows developers to change visibility of the
methods in addition to renaming them. Finally, the already-
existing features of traits along with our contributions to
traits were implemented in Umple, allowing modeling with
traits.
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In addition, the code generation mechanism of Umple was
also extended so that traits in the modeling level can be imple-
mented in languages such as Java, PHP, and C++. This in turn
allows us to use our approach as a generic extension providing
traits in those languages. We applied our proposed approach
to two systems the Umple compiler itself and JHotDraw. The
results showed reduction in duplication and a better reusable
mechanism in the modeling level.

Our work should not be seen as an attempt to extend UML
(which is a graphical language). We do show a graphical
representation generated from our notation, but this is purely
to help in understanding the textual syntax we present.

As future work, we intend to provide a more formal
definition for our trait extensions like the one defined for
basic traits in [21]. We would also like to create an Umple
extension to let developers automatically discover traits
in their already-developed systems, to apply our mecha-
nism on further real-world open-source systems, and to
design an empirical study regarding learnability. Our ini-
tial studies have shown that the approach has potential
in domain of design patterns and software product lines;
therefore, we would like to work on implementing design
patterns with traits and gathering them under a repository of
traits for Umple. Furthermore, we plan to continue expand-
ing the example systems on which we have tested our
work and include systems written in languages other than
Java.
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