
Adding a Textual Syntax to an Existing
Graphical Modeling Language: Experience

Report with GRL

Vahdat Abdelzad, Daniel Amyot(B), and Timothy C. Lethbridge

School of Electrical Engineering and Computer Science,
University of Ottawa, Ottawa, Canada

{v.abdelzad,damyot,Timothy.Lethbridge}@uottawa.ca

Abstract. A modelling language usually has an abstract syntax (e.g.,
expressed with a metamodel) separate from its concrete syntax. The
question explored in this paper is: how easy is it to add a textual concrete
syntax to an existing language that offers only a concrete graphical syn-
tax? To answer this question, this paper reports on lessons learned during
the creation of a textual syntax (supported by an editor and transfor-
mation tool) for the Goal-oriented Requirement Language (GRL), which
is part of the User Requirements Notation standard. Our experiment
shows that although current technologies help create textual modelling
languages efficiently with feature-rich editors, there are important con-
flicts between the reuse of existing metamodels and the usability of the
resulting textual syntax that require attention.

Keywords: Goal-oriented Requirement Language · Graphical modeling
language · jUCMNav · Metamodel · Textual syntax · Xtext

1 Introduction

A model is an abstraction of the reality that helps engineers and other users
focus on specific aspects of a problem or a system in order to support communi-
cation, understanding, analysis, and decision making. Modeling languages often
have a graphical and/or a textual representation, called concrete syntax. The
concepts of a modeling language are often captured with an abstract syntax, for
example in the form of a grammar or a metamodel [14]. Concrete syntaxes bring
understandability, usability, and often visualization to the concepts defined at
the abstract level.

Graphical and textual syntaxes both have strengths and limitations [25].
With diagrams, it is often easier to understand non-linear relationships (such
as graphs) and appreciate analysis results than with text. On the other hand,
textual models are often easier to create and manipulate (e.g., through intelli-
gent editors or simpler copy-pasting). It is also challenging to find appropriate
symbols and metaphors in a graphical language in order to assure a suitable cog-
nitive fit for all users. The cognitive effectiveness of notations has been explored
c© Springer International Publishing Switzerland 2015
J. Fischer et al. (Eds.): SDL 2015, LNCS 9369, pp. 159–174, 2015.
DOI: 10.1007/978-3-319-24912-4 12



160 V. Abdelzad et al.

substantially in the past few years, based on frameworks such as Physics of
Notations [21], and illustrated on different graphical languages such as for goal
modeling [21] and scenario/process modeling [11].

Ideally, modelers should be given the choice of using among the concrete
syntaxes that best suit the tasks they have to perform, for example, a textual
syntax to create a model and a graphical syntax to communicate the model and
visualize analysis results. Several standardized languages already support textual
and graphical syntaxes (e.g., [13,15,17]), but often they have been designed
to support both from the beginning. In this paper, we are more interested in
exploring the challenges related to the addition of a textual concrete syntax to
an existing language for which only a concrete graphical syntax already exists.
This exploration is done through the design of an actual editor-supported textual
syntax for the Goal-oriented Requirement Language (GRL), a requirements-level
goal modeling language standardized as part of the User Requirements Notation
(URN) [3,16]. One challenge here is that the abstract syntax of URN is based
on a metamodel oriented towards the graphical representation of its concepts,
without consideration for a potential concrete textual syntax.

Section 2 presents work related to modeling language design, together with
background on GRL and existing tool support (jUCMNav [4,28]). Section 3 intro-
duces some of the main challenges we have observed when adding a textual syn-
tax to an existing metamodel-based graphical language, together with elements
of solutions. Section 4 presents our case study, where we created a grammar for
a Textual GRL (TGRL), together with an Eclipse-based rich editor and a trans-
formation mechanism that converts TGRL models to URN models readable
by jUCMNav. Not all modeling languages are based on metamodels and not
all language editors are using Eclipse, but our experience report does involve
metamodels and Eclipse technologies. A short discussion of lessons learned is
presented in Sect. 5, followed by conclusions and future work in Sect. 6.

2 Background

This section reviews closely-related work on modeling language design and high-
lights the background concepts on GRL and jUCMNav required to understand
the examples of challenges and solutions discussed later in the paper.

2.1 Related Work on Textual and Graphical Languages

Several languages already support textual and graphical syntaxes. Among
the languages standardized by the International Telecommunication Union -
Telecommunication Standardization Sector (ITU-T), common examples include
the Specification and Description Language (SDL) [13], Message Sequence
Charts (MSC) [15], and the Testing and Test Control Notation (TTCN-3) [17].
All are supported by many tools, some of which allowing modelers to use both
syntaxes interchangeably and transparently. TTCN-3 even offers an additional
tabular concrete syntax [18]. While SDL uses an abstract grammar as abstract



Adding Textual Syntax to a Graphical Language: Experience with GRL 161

syntax, TTCN-3 is based on a metamodel. However, these languages have devel-
oped their concrete textual syntax, concrete graphical syntax, and abstract syn-
tax more or less at the same time. With URN and GRL, there are already a
metamodel and a graphical syntax that have been in place for many years, so
adding a textual syntax is more problematic in that context.

In the Unified Modeling Language (UML) world, several textual syntaxes
have been proposed for subsets of UML, often as a means to create models and
then visualize them. Cabot as collected a list of such languages and tools [6]. We
are not really interested in these technologies as they do not allow modelers to
create instances of the UML metamodel, which would have enabled analysis and
transformations based on standard UML. These tools have their own internal
representations.

In a different and more recent approach, we find Umple, a textual language
that integrates concepts from UML class/state diagrams and patterns with
programming languages such as Java [8]. Umple models are written using human-
readable text seamlessly integrated with code. Umple models can also be visual-
ized with the UML notation. This model-is-the-code approach helps developers
maintain and evolve code as the system matures simply by the fact that both
model and code are integrated as aspects of the same system [10]. Still, Umple
uses its own metamodel, not UML’s.

2.2 Related Work on Enabling Technologies

The Object Management Group (OMG) has proposed the UML Human-Usable
Textual Notation (HUTN), a technology for automatically supporting user-
readable concrete syntaxes of models and model instances based on the MetaOb-
ject Facility (MOF) [23]. One interesting feature of HUTN is that the textual
syntax does not need to reflect exactly the structure of the metamodel. Parame-
ters can be used to create short-hands and make the syntax more readable and
usable. For example [23], one can set:

– The use of a class attribute as the class unique identifier for a given scope;
– The representation of a Boolean or enumerated attribute as a keyword;
– The use of default values for mandatory attributes (making them optional);
– The selection of an alternate name for any model element;
– Alternative representations for associations.

Unfortunately, HUTN is supported only a few tools, including the one pro-
posed by Rose et al. [27], which is part of the Eclipse Epsilon project. HUTN was
shown to be complicated to use, and resulting editors have limited capabilities.

Eclipse’s Xtext [32] is one of the enabling technologies used to produce
feature-rich editors for a textual language. Xtext usually takes a language gram-
mar as input and the corresponding metamodel is automatically built in the
background. It also allows reusing already-existing metamodels, but then there
is no flexibility in the design of the language syntax. In other words, importing
metamodels constrains the design of language. Changing the grammar changes



162 V. Abdelzad et al.

the underlying metamodel, which might create some issues with transforma-
tions that use such metamodel as a source. In that context, Schmidt et al. [30]
proposed a category of refactorings for Xtext that use asymmetric bidirectional
model transformations to synchronize the various artifacts of language descrip-
tions, including transformations (based on Xtend [31]).

Other technologies for textual syntax development include EMFText from
Heidenreich et al. [12], which generates automatically default syntax from Eclipse
Modeling Framework (EMF) models, with some possibilities for syntax tailoring
before the generation of text editors. Jouault et al. [19] also proposed Textual
Concrete Syntax (TCS), a generative solution that transforms grammars into
editors and tools for model-to-text and text-to-model transformations. Both
EMFText and TCS are however far less popular and mature than Xtext, and
their development seems to have stopped several years ago.

Finally, as graphical syntaxes often include textual syntaxes for various kinds
of expressions, Scheidgen presented techniques to embed textual editors into
graphical model editors and provided a proof of concept involving Eclipse-based
technologies [29]. However, we are more interested here in generating a new
textual syntax than in embedding one in a graphical syntax.

2.3 Goal-Oriented Requirement Language (GRL)

The URN standard is composed of two complementary sub-languages: (i) GRL
for modeling the intentions of actors and systems, together with their various
relationships, and (ii) Use Case Maps (UCM) for modeling causal scenarios and
processes superimposed on a structure of components [16]. GRL core concepts
include actors, intentional elements (e.g., goals, softgoals, tasks, resources and
beliefs), links (decompositions, dependencies, weighted contributions) and indi-
cators (Fig. 1). GRL model elements are URN model elements. As such, they
can have metadata (name-value pairs) and typed URN links connecting pair of
elements; these concepts are useful to extend and tailor URN to specific domains,
in a standard way [3].

Many of the concepts of GRL have a visual representation. In URN, the
graphical language metamodel is a pure superset of the abstract syntax meta-
model. For example in Fig. 2, an actor reference (ActorRef) is the visual repre-
sentation of an actor in a GRL graph and hence possesses attributes such as a
size, a label, and a position. The actor itself has color-related attributes, which
are shared by all its references.

GRL model analysis, whether qualitative (using contribution, satisfaction,
and importance values from their respective enumerated types in Fig. 1) or quan-
titative (using integer values in specific ranges), is done through strategies. A
strategy provides initial satisfaction values to some of the intentional elements
in the GRL model, and an evaluation algorithm propagates this information
(through the GRL links) to the other intentional elements and to the actors in
order to compute their resulting satisfaction values [3,16]. As it is often difficult
to agree on the weights of contribution links in GRL models, the standard also
includes contribution changes as a mechanism to specify and group (in collection



Adding Textual Syntax to a Graphical Language: Experience with GRL 163

Contribution

contribution : ContributionType = Unknown
quantitativeContribution : Integer = 0
correlation : Boolean = false

ContributionType

Make
Help
SomePositive
Unknown
SomeNegative
Hurt
Break

<<enumeration>>

Decomposition DecompositionType

AND
XOR
IOR

<<enumeration>>

Dependency IntentionalElementType

Softgoal
Goal
Task
Resource
Belief

<<enumeration>>

GRLmodelElement

GRLLinkableElement IntentionalElement

type : IntentionalElementType
decompositionType : DecompositionType = AND

URNmodelElement

id : String
name : String

Metadata

name : String
value : String

0..1

0..* elem

0..1metadata

0..*

URNlink

type : String

0..*1
toLinks

0..*
toElem
1

1 0..*
fromElem
1

fromLinks
0..*

Indicator

unit : String = ""

ElementLink 0..* 1
linksDest
0..* dest 1

0..*

1linksSrc

0..* src
1

URNspec

name : String

0..1
0..*

0..1

metadata
0..*

1

0..*

1

urnLinks

0..*

GRLContainableElementActor

0..1
0..*

actor

0..1 elems
0..*

GRLspec

0..*

1

links 0..*

1

1

0..1

1

0..1
0..*1

intElements
0..*1

0..*1
actors
0..*1

ImportanceType

High
Medium
Low
None

<<enumeration>>

Fig. 1. GRL metamodel: core GRL concepts (adapted from [16])

contexts) a local modification to the weight of a contribution link, which can be
applied to a base model before evaluating its strategies. What is important to
observe here is that strategies (not shown here) and contribution changes (Fig. 3)
do not currently have any concrete syntax, and hence these parts of a model need
to be specified through a tool’s user interface and tree-structured views, as is
currently done in jUCMNav [4].

The absence of a complete graphical syntax and of a textual syntax has
already been observed as a “sin” in the design of the GRL language [22]. In
addition, the graphical syntax has similar cognitive efficiency weaknesses as those
observed for the i* goal modeling language [21], as GRL’s syntax is based in part
on the one from i*.

2.4 jUCMNav Tool

jUCMNav is an open-source Eclipse plugin for URN modeling, analysis, report-
ing and transformation, developed since 2004. The GRL modeling and analysis
part was first provided by Roy et al. [28], and has substantially evolved since
then to support new features and newer concepts now found in the standard [16].

Given that jUCMNav was initiated before the first version of URN was stan-
dardized in 2008, and given that jUCMNav is also used as a platform for explor-
ing new language concepts that could be integrated into URN in the future (like
contribution changes were integrated in the 2012 edition of URN [16]), there
are many differences between jUCMNav’s metamodel and URN’s (see http://

bit.ly/1GCbhNa for details). For example, jUCMNav’s metamodel uses interface
classes (for reusability across its UCM and GRL editors) and packages, there are

http://bit.ly/1GCbhNa
http://bit.ly/1GCbhNa


164 V. Abdelzad et al.

GRLmodelElement

Label

deltaX : Integer
deltaY : Integer

GRLGraph

Position

x : Integer
y : Integer

Size

width : Integer
height : Integer

ActorRef

0..1

1

0..1

label 1

1

0..*
diagram

1

contRefs
0..*

0..1

1

0..1

pos

1

0..1

1

0..1
size

1

Actor

1 0..*
actorDef
1

actorRefs

0..*

ConcreteStyle

lineColor : String
fillColor : String
filled : Boolean = false

GRLLinkableElement

importance : ImportanceType = None
importanceQuantitative : Integer = 00..1

0..1

linkElement
0..1

style
0..1

Fig. 2. GRL metamodel: graphical classes for actor references (adapted from [16])

GRLmodelElement

Contribution

ContributionChange

newContribution : ContributionType = Unknown
newQuantitativeContribution : Integer = 0

0..*

1

changes0..*

contribution1

GRLspec

ContributionContext

1

0..*

grlspec
1

contribContexts
0..*

1

0..* context

1changes

0..*
0..*

0..*

includedContexts
0..*

{ordered}

parentContexts
0..*

ContributionContextGroup
1

0..*

grlspec
1

contribContextGroups

0..*

0..*

1..*

contribs0..*

groups1..*

Fig. 3. GRL metamodel: contribution changes, with no graphical syntax [16]

minor mismatches in how indicators and strategies are supported, and there are
additional classes to support aspect-oriented modeling. jUCMNav however can
import and export models in the Z.151 XML-based interchange format.

3 Challenges Faced When Adding a Textual Syntax

Adding a concrete textual syntax to a metamodel-based language with an exist-
ing concrete graphical syntax involves steps in which there are technical and
non-technical challenges. The designer of the textual syntax has to define related
keywords, build a consistent structure associated with the definitions and assign-
ments, keep the metamodel of the textual language (if any) compatible with the
abstract syntax (language metamodel), select the proper technology to imple-
ment the textual language, implement a mechanism to apply specific restrictions
and rules, and finally develop a mechanism to synchronize the textual and graph-
ical syntax representations.

3.1 Choice of Keywords

Keywords of a textual language have an important role in the usability and
adoption of the language. They must be chosen from the domain vocabulary



Adding Textual Syntax to a Graphical Language: Experience with GRL 165

and be close to the language abstract syntax (assuming that the abstract syntax
constructs have meaningful names). If the textual keywords are also aligned
with the graphical syntax symbols and keywords, then this will also help the
adoption of the textual language by already-existing users while also decreasing
the learning curve. Balancing this closeness is not an easy task and usually results
in tradeoffs. The users of graphical languages work with graphical notations and
often names are hidden implicitly in the shape of notations. These hidden names
sometimes cannot be expressed by a single word, supposed to be considered as
a keyword in the textual syntax. Using the exact graphical or abstract names
may potentially result in a bulky language.

During the design of TGRL, we have faced that challenge and we decided
to consider three important criteria while defining keywords: (1) be consistent
with the abstract syntax in terms of the semantics; (2) favor usability over rigid
following of the metamodel; and (3) avoid defining keywords when possible. For
example, we defined the keyword decomposedBy for the element link decompo-
sition and did not use a specific keyword for defining evaluation elements for
strategies. Note that when discussing usability in a textual modeling language,
we do not try to compare it with that of a graphical modeling language (these
are separate problems).

In terms of process, we first defined keywords similar to concept names from
the abstract syntax. This helped us have a blueprint of the textual language
and revealed some challenges, e.g., conflicting keywords or a high number of
keywords. We then changed some keywords in order to solve conflicts, modified
them to be more human readable, and finally simplified the language by removing
unnecessary keywords.

3.2 Structure Consistency

Each defined keyword would have some structure and properties that need to be
set during the development of models. The values assigned to properties and their
structure should be kept similar, because this promotes language learnability.
For this purpose, they are several patterns that can be adapted from either
programming or modeling languages. For our language, we adopted a structure
inspired from Umple [8,10]. For example, if there are several properties needed to
be set, we use the name of the property along with its value. However, if there is
only one property, we just assign the value without requiring the property name.

3.3 Alignment of Metamodels

When keywords and structures are defined, the grammar must be implemented.
There are two general ways to do this. The first one is to use the already-existing
language metamodel and cover it with the definition of the textual language. This
approach makes the implementation process straightforward, but there might be
situation where the grammar and the metamodel, which becomes a constraint,
cannot be aligned properly without greatly affecting usability. The second app-
roach is to let the textual language build its own metamodel, à la Xtext. This



166 V. Abdelzad et al.

approach allows getting the maximum benefits of having a simple and human-
readable textual syntax, but it might result in an underlying metamodel that
will require the creation of major internal model transformations from instances
of the textual metamodel to instance of the abstract syntax metamodel.

We have experienced both approaches and recognized that the first approach
results in a textual syntax that is too synthetic, especially if the language abstract
syntax was never designed with a potential concrete textual syntax in mind
(which is the case for GRL’s). Furthermore, the second approach allows having
several alternatives for a definition while it is not the case in the first approach.
For example, we could design two alternatives ways of defining element links.
The first alternative has an independent structure and needs both the link source
and the link destination to be specified while the second alternative depends on
the location in the source and just needs the destination to be specified. In our
case study (next section), we have chosen to adopt the second approach.

3.4 Technology Selection

In order to implement one of the approaches discussed in the previous section,
a suitable technology must be selected. As discussed in Sect. 2.2, there are sev-
eral technologies such as Xtext, EMFText, and TCS that can be used for these
purposes. The choice will be largely influenced by how potentially usable a tex-
tual syntax (automatically) generated from the abstract syntax can be, by the
intended usage of the textual language, and by the required quality of resulting
editor tooling.

In our study of TGRL, we have selected Xtext because it is an active project
and provides a rich editor for the language. Working with Xtext is simple and
fast, but everything has to be based on the Xtext grammar. This prevents devel-
opers from improving or “tweaking” the structure of the final metamodel.

Hence, this choice came at the cost of having to transforms Xtext-based
models (from TGRL) to the target abstract syntax (in our case, URN’s meta-
model). In such a context, such transformation can be done with model-to-model
transformations (e.g., with Java or specialized languages such as Eclipse’s ATL
Transformation Language [5]) or with model-to-text transformations targeting
serialized models (e.g., again with Java or with enhanced technologies such as
Xtend [31] or Acceleo [2]). As we had good experiences using Acceleo in the past,
we opted for this path.

3.5 Handling Restrictions and Rules

The implemented syntax comes with restrictions and rules that need to be
checked and applied continuously. These rules and restrictions come from two
main sources: the abstract syntax (and its static semantics constraints) and the
concrete syntax itself. For example, the identifier (ID) could have to follow a
specific pattern, or cyclical definitions may need to be prevented. The rules from
the abstract syntax are usually clear and already defined, but the ones from
the concrete syntax must be specified. Such rules may be used to improve the



Adding Textual Syntax to a Graphical Language: Experience with GRL 167

readability of the concrete syntax (especially if alternative representations are
supported) or keep the syntaxes compatible. Part of this validation can be sup-
ported automatically by the technology used to implement the language (e.g.,
Xtext). However, the rest must be implemented manually. For example, checking
the validity of a reference is supported by the editor provided by Xtext while
checking for duplicates of a link must be implemented manually.

3.6 Synchronizing Textual and Graphical Models

Keeping connections between the textual syntax and the graphical syntax is
important in order to fully benefit from the iterative use of both syntaxes by
modelers. Generally, there are two ways to do this: synchronously and asyn-
chronously. In the synchronous case, the transformation is done automatically
and both syntaxes are refreshed continuously so as to show a consistent rep-
resentation (in a way to the model-view-controller pattern). This is the most
desirable case but its feasibility depends on the technology employed to develop
the concrete syntaxes. If the technology used in either the textual or the graph-
ical syntaxes does not support external synchronization, then this option might
be impossible. In the asynchronous case, users work on a concrete syntax and
when one needs to have the other representation, the transformation is done
explicitly, on demand. This approach is a solution to the cases where the syn-
chronous approach in unfeasible or when synchronization is too costly in terms
of speed or memory usage.

In our case study, we used asynchronous transformations because of issues
regarding the synchronization with the technology used for graphical syntax
(e.g., jUCMNav). So far, we investigated only one transformation (from TGRL
to URN), the reverse one being left for future work. As explained in Sect. 3.4, the
current transformation is performed through a model-to-text approach imple-
mented with Acceleo, which is a pragmatic implementation of OMG’s MOF
Model to Text Language (MTL) standard. jUCMNav can read the files gener-
ated in that way, and its auto-layout mechanism can be used to visualize the
models.

4 Case Study: TGRL

4.1 TGRL Concrete Syntax

In this section, we describe a case study involving the design of a concrete tex-
tual syntax for GRL (called TGRL) with tool support (editor and automated
transformation). Any concrete syntax has general rules that are applied for all
keywords and their related structures. In our concrete textual syntax, the general
rules are as follows:

– GRL elements are usually defined through keywords using camelCase bound-
aries (e.g., a softgoal intentional element is represented by a softGoal).

– Model element properties and sub-elements are set inside curly brackets.



168 V. Abdelzad et al.

– Every definition ends with a semicolon except when a pair of curly brackets
is utilized to include properties or sub-elements.

– String values are surrounded by quotation marks.
– Comments are delimited by //.

TGRL model elements have a textual identifier (ID) as well as optional
metadata (name-value pairs). Intentional elements (goals, softgoals, tasks and
resources) also have qualitative/quantitative importance values (to their contain-
ing actor). For example, Fig. 4 shows the TGRL representation of a simple GRL
model with three actors, their intentional elements, and various links. This is a
common GRL pattern where alternative ways of achieving some system function-
ality have different impacts on the concerns of stakeholders (such as users and
developers). IDs are used as names unless specified otherwise. Qualitative values
and quantitative values (between −100 and 100) can be used interchangeably.
Lists can be used for definitions and usages (e.g., see the decomposedBy relation-
ship in the example).

As in Umple [8,10], links can be specified inside one element or outside the
relevant elements, depending on the modeler’s preference. In Fig. 4, one contri-
bution is defined inside the System actor, one is defined in the User actor and
targets an element of another actor, and two other contributions are defined
outside all actors.

Note that scoping is also used to resolve potential naming issues. For example,
in the contribution link inside the System actor, task FirstOption is local but
softgoal ReuseComponents is defined elsewhere, and hence must be prefixed by
its containing actor (Developer). GRL dependency links are handled in a similar
way.

TGRL also supports contribution changes (for which there is no graphical
syntax in standard URN, see Fig. 3) and handles advanced constructs such as
contribution inclusion and value ranges. For example, Fig. 4 contains a group
(SomeOverrides) of two sets of contribution changes that make reference to two
contribution links named C1 and C2. The first set (FirstOverride) changes C1

and C2 with new quantitative and qualitative values, respectively. A tool such as
jUCMNav will substitute the targeted contributions weights with the new values
specified in this contribution set before analyzing any strategy. The second set
(SecondOverride) extends the first one (and hence inherits the make value for C2),
but now C1 is defined as a range of values that go from −40 to 0 by steps of
10 (i.e., {−40,−30,−20,−10, 0}). In jUCMNav, when such a range is specified,
the selected strategy is evaluated iteratively for all the contribution values in
that range, leading to sets of resulting evaluations for all intentional elements
and actors in the model (which is useful for sensitivity analysis). In TGRL’s
grammar, it was decided to keep the start, end, and step keywords in order to
make the meaning of the values explicit and more easily understandable.

Similarly, TGRL supports groups of evaluation strategies, with strategy
inclusion (for reuse), indicator initialization, and value ranges. Again here, TGRL
provides a concrete textual syntax for elements that do not have a graphical syn-
tax in URN.



Adding Textual Syntax to a Graphical Language: Experience with GRL 169

Fig. 4. Simple illustrative TGRL model



170 V. Abdelzad et al.

Fig. 5. Overview of the TGRL editor, with content assistance

Note also at the end of Fig. 4 that URN links are also supported. In this
example, a link of a user-defined type mustUse connects the User to the System.
Again, standard URN does not have a concrete graphical for this element, and
jUCMNav relies on dialog boxes for creating such model elements (which are
not displayed on the diagrams).

4.2 TGRL Editor and Transformation to jUCMNav

As Xtext was used to implement the TGRL syntax, we were able to get a feature-
rich editor for very little effort. The Eclipse-based TGRL editor comes with
configurable syntax highlight (as shown in the code in Fig. 4), an outline view,
annotation of syntactic errors, content assistance, and code formatting. Figure 5
gives an overview of the editor.

The modeler, using Control-Space, can invoke code completion at any
moment. Not only is this available for the keywords found in the grammar, this
is also available for references to existing elements. For example, in Fig. 5, several
suggestions are provided as potential targets of an incomplete contribution link.
This greatly accelerates the coding, and also the learning of the language as one
can get suggestions at any step.

The transformation between TGRL models and URN/jUCMNav models
serialized in XML was implemented with Acceleo. While designing the TGRL
syntax, we were able to make quick iterations from changing the Xtext-based
grammar to adapting the Acceleo code and regenerating the editor and exe-
cutable transformation, often within two minutes. Our transformation does not
handle the layout of the generated GRL diagrams, but jUCMNav has several
features for creating views of a model and for automatically laying out elements.
For example, Fig. 6 shows the GRL model corresponding to the ongoing exam-
ple, as imported by jUCMNav. The evaluation of the strategy SelectFirst is also
shown, using quantitative values, and without any contribution change applied.

5 Discussion

In their original draft proposal for GRL in 2001, Liu and Yu defined a GRL
ontology with a graphical syntax, a textual syntax, and an XML interchange
format (but without a fully defined abstract syntax) [20]. The textual notation
they proposed was cognitively hard to understand and did not cover the advanced



Adding Textual Syntax to a Graphical Language: Experience with GRL 171

Fig. 6. Sample GRL model imported in jUCMNav, with a strategy evaluated quanti-
tatively

GRL features found in standard URN (e.g., indicators, strategies, quantitative
values, metadata, URN links, and contribution changes). We believe that the
syntax for GRL should be intuitive, without requiring keywords when the context
is clear (e.g., TGRL contribution weights do not require a keyword as they are
expected to be provided 99 % of the time). TGRL is the first concrete syntax to
cover all of GRL’s constructs, and in that sense it goes beyond URN’s standard
graphical syntax [16].

Rashidi-Tabrizi et al. also proposed and implemented (in jUCMNav) an
import mechanism for GRL models and strategies in a tabular concrete syntax,
as comma-separated value files [26]. This allows people knowledgeable in tools
like Excel to create GRL models without having to use jUCMNav, and then
use jUCMNav for visualizing and analyzing models (as we do). However, their
mechanism is limited to a subset of GRL (e.g., without contribution changes),
and targets a very specific type of GRL models for the laws and regulations
domain. Hence, their solution is not as generic and exhaustive as TGRL’s.

Engelen and Van Den Brand have used two techniques, named grammarware
and modelware, for the integration of textual and graphical modeling languages
by implementing a textual surface language as an alternative for activity dia-
grams in UML [7]. In the grammarware technique, a text-to-text transformation
was used while model-to-text, text-to-model, and model-to-model transforma-
tions were used in modelware. Their approach enabled them study the benefits
and drawbacks of both techniques. Other similar comparisons were done by
Gargantini et al. [9]. In our implementation, we utilized a modelware-like
approach in which we have a model-to-text transformation used to generate
jUCMNav files from TGRL models. However, more importantly, the availabil-
ity of a GRL graphical editor (jUCMNav) and of a textual editor (TGRL) now
enables us to compare both approaches quantitatively and answer usability ques-
tions in requirements engineering and system development contexts.



172 V. Abdelzad et al.

The integration of textual and graphical multi-view domain-specific lan-
guages was explored by Pérez Andrés et al. [24], in which they utilized the
AToML model transformation tool. In their approach, a metamodel of the whole
language must be defined first and then subsets have to be selected for different
viewpoints. Then, a viewpoint metamodel is transformed into a textual model,
from which a parser is automatically derived and integrated with the generated
multi-view environment. This approach can be seen as a bridge between the
modelware and the grammarware approaches. This viewpoint approach might
be revisited in our context as in fact GRL is a view of URN. If a textual syntax
is eventually produced for UCM (the other sub-language of URN), it might be
interesting to evaluate whether it is beneficial to support URN models, UCM
models, and GRL models (the three views) with standalone tools. It would also
be interesting to consider providing different concrete textual syntaxes for GRL,
e.g., for goal modeling in general, or with different keywords for specific domains
such as law and regulation modeling, as needed in [26].

6 Conclusions and Future Work

In this paper, we have reported on the challenges that exist when trying to
add a usable concrete textual syntax to a rich metamodel-based language pre-
dominantly oriented towards a concrete graphical syntax. We have discussed
several alternatives for addressing challenges related to the choice of keywords,
to structure consistency, to the alignment of metamodels, to the selection of suit-
able language design technologies, to rule handling, and to the synchronization
between textual and graphical representations.

Many of these challenges were illustrated based on our case study, where we
created a textual syntax for the GRL modeling language called TGRL. In addi-
tion to the observations we have made based on our experience, this paper led to
the creation of the first textual syntax for an i* -based goal-modeling language
(as far as we know). TGRL also covers GRL fully, even concepts for which there
is no standard graphical syntax (e.g., strategies, contribution changes, and URN
links). A feature-rich, Xtext-based editor is now available for TGRL, together
with a transformation to a URN model serialized in XMI and readable by the
jUCMNav tool [1]. The availability of TGRL now enables researchers to compare
the efficiency and usability of textual and graphical syntaxes in a goal modeling
context, for different tasks and types of users.

In terms of future work, as this paper reports on only one language, it
would be important to gather additional experience on other modeling languages,
including some that are not based on metamodels. This would help identify com-
mon problems and trends across languages of different natures. It would also be
interesting to better separate concerns related to language definition and tool
integration.

On the TGRL side, further validation of the correctness and usability of this
language is needed. One important feature currently missing is the availability of
a transformation from jUCMNav to TGRL, which would enable modelers to go



Adding Textual Syntax to a Graphical Language: Experience with GRL 173

back and forth between the two representations. The support for additional well-
formedness and semantic rules in the TGRL editor would also represent a good
improvement. Another obvious step is the extension of this language to support
the whole URN standard, including UCM (where, again, several concepts do not
have a graphical syntax [11]). This could even lead to improvements to the URN
standard at ITU-T. We also envision opportunities to combine TGRL (for goals)
with Umple (for design and implementation) as they provide complementary
concepts. Finally, the study of various concrete syntaxes for GRL (or URN),
targeting different domains, is also something to explore, especially in terms of
cognitive fitness.

Acknowledgement. This work was sponsored in part by the Natural Sciences and
Engineering Research Council of Canada (NSERC) through its Discovery grant program.

References

1. Abdelzad, V.: Textual modeling language for GRL (2015). https://github.com/
vahdat-ab/TGRL/

2. Acceleo (2015). http://www.eclipse.org/acceleo/
3. Amyot, D., Mussbacher, G.: User requirements notation: the first ten years, the

next ten years. J. Softw. (JSW) 6(5), 747–768 (2011)
4. Amyot, D., Shamsaei, A., Kealey, J., Tremblay, E., Miga, A., Mussbacher, G.,

Alhaj, M., Tawhid, R., Braun, E., Cartwright, N.: Towards advanced goal model
analysis with jUCMNav. In: Castano, S., Vassiliadis, P., Lakshmanan, L.V.S., Lee,
M.L. (eds.) ER 2012 Workshops 2012. LNCS, vol. 7518, pp. 201–210. Springer,
Heidelberg (2012). http://softwareengineering.ca/jucmnav

5. ATL Transformation Language (2015). https://eclipse.org/atl/
6. Cabot, J.: UML tools - textual notations to define UML models (2009). http://

sumo.ly/5Mb. Accessed 6 June 2015
7. Engelen, L., Van Den Brand, M.: Integrating textual and graphical modelling lan-

guages. Electron. Notes Theor. Comput. Sci. 253(7), 105–120 (2010)
8. Forward, A., et al.: Model-driven rapid prototyping with Umple. Softw. Pract.

Exper. 42(7), 781–797 (2012)
9. Gargantini, A., Riccobene, E., Scandurra, P.: Deriving a textual notation from a

metamodel: an experience on bridging modelware and grammarware. In: 3M4MDA.
CTIT Workshop Proceedings Series WP06-02, pp. 33–48 (2006)

10. Garzón, M., Aljamaan, H.I., Lethbridge, T.C.: Umple: A Framework for Model
Driven Development of Object-Oriented Systems. In: SANER 2015, pp. 494–498.
IEEE CS (2015)

11. Genon, N., Amyot, D., Heymans, P.: Analysing the cognitive effectiveness of the
UCM visual notation. In: Kraemer, F.A., Herrmann, P. (eds.) SAM 2010. LNCS,
vol. 6598, pp. 221–240. Springer, Heidelberg (2011)

12. Heidenreich, F., Johannes, J., Karol, S., Seifert, M., Wende, C.: Derivation and
refinement of textual syntax for models. In: Paige, R.F., Hartman, A., Rensink,
A. (eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp. 114–129. Springer, Heidelberg
(2009)

13. International Telecommunication Union: ITU-T Recommendation Z.100 (12/11) -
Specification and Description Language - Overview of SDL-2010 (2011). http://
www.itu.int/rec/T-REC-Z.100-201112-I

https://github.com/vahdat-ab/TGRL/
https://github.com/vahdat-ab/TGRL/
http://www.eclipse.org/acceleo/
http://softwareengineering.ca/jucmnav
https://eclipse.org/atl/
http://sumo.ly/5Mb
http://sumo.ly/5Mb
http://www.itu.int/rec/T-REC-Z.100-201112-I
http://www.itu.int/rec/T-REC-Z.100-201112-I


174 V. Abdelzad et al.

14. International Telecommunication Union: ITU-T Recommendation Z.111 (11/08)
- Notations and guidelines for the definition of ITU-T languages (2008). http://
www.itu.int/rec/T-REC-Z.111-200811-I

15. International Telecommunication Union: ITU-T Recommendation Z.120 (02/11)
- Message Sequence Chart (MSC) (2011). http://www.itu.int/rec/T-REC-Z.
120-201102-I

16. International Telecommunication Union: ITU-T Recommendation Z.151 (10/12)
- User Requirements Notation (URN) - Language Definition (2012). http://www.
itu.int/rec/T-REC-Z.151-201210-I

17. International Telecommunication Union: ITU-T Recommendation Z.161 (11/14)
- Testing and Test Control Notation Version 3: TTCN-3 Core Language (2012).
http://www.itu.int/rec/T-REC-Z.161-201411-I

18. International Telecommunication Union: ITU-T Recommendation Z.162 (11/07)
- Testing and Test Control Notation Version 3: TTCN-3 Tabular Presentation
Format (TFT) (2012). http://www.itu.int/rec/T-REC-Z.162-200711-I

19. Jouault, F., Bézivin, J., Kurtev, I.: TCS: a DSL for the specification of textual
concrete syntaxes in model engineering. In: GPCE 2006, pp. 249–254. ACM Press
(2006)

20. Liu, L., Yu, E.: GRL - goal-oriented requirement language. University of Toronto,
Canada (2001). http://www.cs.toronto.edu/km/GRL

21. Moody, D.L., Heymans, P., Matulevičius, R.: Visual syntax does matter: improving
the cognitive effectiveness of the i∗ visual notation. Requir. Eng. 15(2), 141–175
(2010)

22. Mussbacher, G., Amyot, D., Heymans, P.: Eight deadly sins of GRL. In: 5th Inter-
national i∗ Workshop (iStar 2011), CEUR-WS, vol. 766, pp. 2–7 (2011)

23. OMG: UML Human-Usable Textual Notation (HUTN). Version 1.0, formal/2004-
08-01 (2004). http://www.omg.org/spec/HUTN/1.0/

24. Pérez Andrés, F., de Lara, J., Guerra, E.: Domain specific languages with graphical
and textual views. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007.
LNCS, vol. 5088, pp. 82–97. Springer, Heidelberg (2008)

25. Petre, M.: Why looking isn’t always seeing: readership skills and graphical pro-
gramming. Commun. ACM 38(6), 33–44 (1995)

26. Rashidi-Tabrizi, R., Mussbacher, G., Amyot, D.: Transforming legulations into
performance models in the context of reasoning for outcome-based compliance. In:
RELAW 2013, pp. 34–43. IEEE CS (2013)

27. Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.A.C.: Constructing models with
the human-usable textual notation. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl,
A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 249–263. Springer,
Heidelberg (2008)

28. Roy, J.-F., Kealey, J., Amyot, D.: Towards integrated tool support for the user
requirements notation. In: Gotzhein, R., Reed, R. (eds.) SAM 2006. LNCS, vol.
4320, pp. 198–215. Springer, Heidelberg (2006)

29. Scheidgen, M.: Textual modelling embedded into graphical modelling. In:
Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA 2008. LNCS, vol. 5095, pp.
153–168. Springer, Heidelberg (2008)

30. Schmidt, M., Wider, A., Scheidgen, M., Fischer, J., von Klinski, S.: Refactorings
in language development with asymmetric bidirectional model transformations. In:
Khendek, F., Toeroe, M., Gherbi, A., Reed, R. (eds.) SDL 2013. LNCS, vol. 7916,
pp. 222–238. Springer, Heidelberg (2013)

31. Xtend (2015). http://www.eclipse.org/xtend/
32. Xtext (2015). http://www.eclipse.org/Xtext/

http://www.itu.int/rec/T-REC-Z.111-200811-I
http://www.itu.int/rec/T-REC-Z.111-200811-I
http://www.itu.int/rec/T-REC-Z.120-201102-I
http://www.itu.int/rec/T-REC-Z.120-201102-I
http://www.itu.int/rec/T-REC-Z.151-201210-I
http://www.itu.int/rec/T-REC-Z.151-201210-I
http://www.itu.int/rec/T-REC-Z.161-201411-I
http://www.itu.int/rec/T-REC-Z.162-200711-I
http://www.cs.toronto.edu/km/GRL
http://www.omg.org/spec/HUTN/1.0/
http://www.eclipse.org/xtend/
http://www.eclipse.org/Xtext/

	Adding a Textual Syntax to an Existing Graphical Modeling Language: Experience Report with GRL
	1 Introduction
	2 Background
	2.1 Related Work on Textual and Graphical Languages
	2.2 Related Work on Enabling Technologies
	2.3 Goal-Oriented Requirement Language (GRL)
	2.4 jUCMNav Tool

	3 Challenges Faced When Adding a Textual Syntax
	3.1 Choice of Keywords
	3.2 Structure Consistency
	3.3 Alignment of Metamodels
	3.4 Technology Selection
	3.5 Handling Restrictions and Rules
	3.6 Synchronizing Textual and Graphical Models

	4 Case Study: TGRL
	4.1 TGRL Concrete Syntax
	4.2 TGRL Editor and Transformation to jUCMNav

	5 Discussion
	6 Conclusions and Future Work
	References


