
International Journal of Computer Applications (0975 – 8887)
Volume 33– No.8, November 2011

4

Testing Aspect-Oriented Programs with UML Activity
Diagrams

Somayeh Madadpour
Department of Computer

Engineering
Science and Research Branch,

Islamic Azad University
Tehran, Iran

Seyed-Hassan Mirian-
Hosseinabadi

Department of Computer
Engineering

Sharif University of Technology
Tehran, Iran

Vahdat Abdelzad
Department of Computer

Engineering
Science and Research Branch,

Islamic Azad University
Tehran, Iran

ABSTRACT
Aspect-Oriented Programming is a software engineering
paradigm that offers new constructs, such as join points,
pointcuts, advices, and aspects in order to improve separation of
crosscutting concerns. The new constructs bring new types of
programming faults with respect to crosscutting concerns, such
as incorrect pointcuts, advice, or aspect precedence. In fact,
existing object-oriented testing techniques are not adequate for
testing aspect-oriented programs. As a result, new testing
techniques must be developed. In this paper, an approach based
upon UML activity diagram for testing aspect-oriented programs
is presented. The proposed approach focuses on integration of
one or several crosscutting concerns to a primary concern and
tests whether or not an aspect-oriented program conforms to its
expected crosscutting behaviors. The proposed approach
generates test sequences based on interaction between aspects
and primary models, and verifies the execution of the selected
sequences. It also, follows an iterative process which causes to
discover faults easily and quickly. The approach is based on
several test criteria that we defined. To illustrate the approach,
we use a case study which its results show that the approach is
capable of revealing several aspect-specific faults.

General Terms
Verification, Modeling

Keywords
Aspect-Oriented Programming, Model-Based Testing, Aspect-
Oriented Modeling, UML Activity Diagrams, Test Sequences

1. INTRODUCTION
Aspect-Oriented Programming (AOP) was first introduced at
Xerox PARC in 1997s to improve the programming capabilities
of conventional object-oriented programming, especially to
support the principle of Separation of Concerns (SoC) in
software development [1, 2]. Typically, a concern can be
customer required property or a technical interest, such as
security, that can spans the entire system. The central idea of
SoC is to modularize the crosscutting concerns of a system, such
as synchronization, memory management, and persistency in
order to enhance the reusability, extendibility, and
maintainability.

Traditional programming languages such as, procedural and
Object-Oriented (OO) can help programmers in the process of
SoC to some extents. For example, procedural programming

languages, such as Pascal and C, allow developers to separate
concerns into procedures while object-oriented programming
languages, such as C++ and Java, allow developers to separate
concerns into classes and methods. However, the aspect-oriented
programming languages, such as AspectJ, take a step further and
allow developers to separate crosscutting concerns that scatter
across different procedures (or classes) of a system into modular
units called aspects.

AspectJ, as a widely-used AOP programming language for java,
introduces several new programming constructs, such as join
point, pointcut, advice, and aspect [3]. A join point is a well-
defined point in the program execution flow, such as a method
call, a constructor invocation, or a variable access. A pointcut is
an expression that specifies a set of join points. An advice is a
piece of code that is executed when a join point specified in the
pointcut is reached. An aspect is a construct that encapsulates
the join point, pointcut, and advice. With AspectJ, the concerns
that are difficult to express cleanly using traditional
programming languages, such as non-functional requirements,
can be factored out into aspects in order to achieve the principle
of SoC.

One of the capabilities of the aspect-oriented programming
languages is facilitating the defining, specifying, designing, and
constructing aspects and enforcing a better coding style.
However, some errors that generated by the undisciplined
programmers or by the misunderstanding of requirements in the
system during development cannot be prevented. The new
programming constructs and their interactions presented in the
aspect-oriented programming languages are necessary to be
tested. Most important, in AOP paradigm because of weaving
the aspects into the original programs, the behavior of the
system may be changed. Therefore, it becomes a testing
challenge to make sure whether or not the behavior of the woven
AOP program conforms to its program specifications.

To reveal aspect-specific faults, we are motivated to inspect
model-based testing, i.e. testing whether or not aspect-oriented
programs and their primary concerns are in accordance with
their corresponding behavior models. Model-based testing is
attractive because of several benefits [4, 5], including:

• The modeling activity in the testing process can help to
explain the requirements and to improve the
relationships between developers and testers.

• If design models are available, can be reused to testing
purposes.

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 33– No.8, November 2011

5

• The model based testing process can be (partially)
automated.

• Fault detection capability can be improved by model-
based testing as well as testing cost can be reduced by
automatically generating and executing test cases.

Pretschner et al. [5, 6] illustrated that, for the case study of an
automotive network controller, a six-fold increase in the number
of model-based tests has led to an 11% increase in detected
errors. Dalah et al. [7] demonstrated that with applying model-
based testing on four large scale case studies, generated test
cases revealed numerous defects that were not exposed by
traditional approaches. Blackburn et al. [8] by applying model-
based testing methods and tools on the Mars Polar Lander
(MPL) software were able to identify its error that is believed to
have caused the MPL to crash to the Mars surface on December
3, 1999.

Here we propose an UML activity diagram [9] based approach
to testing whether or not an aspect-oriented program conforms
to its expected crosscutting behavior. The approach focuses on
the problem related to weaving one or several crosscutting
concerns to a primary concern. The approach follows an
iterative process. It consists of generating, in a first step, test
sequences corresponding to different scenarios of the activity
diagram of the primary concern under test. This is done to
reduce the complexity of the testing process and to remove the
likely faults related to the primary concern. In a second step,
crosscutting concerns are integrated into primary concern in an
incremental way and then, test sequences from the integrated
model are generated. The primary objective is to verify that the
original behavior of the primary concern is not changed by
aspects, and to ensure that aspects behave correctly. Verification
process of the selected sequences (test sequences generated in
two previous steps) is done in the third step.

In addition, such an incremental approach to testing aspect-
oriented programs can reduce the complexity of detecting
eventual conflicts between aspects. We focus, in the context of
our approach, on the conflicts that appear in the integration of
one or several aspects to a primary concern. We define some test
criteria related to the new dimensions introduced by the
integration of aspects to the primary concern. For realization of
our proposed approach we focus on AspectJ, however, our
approach is general and may be adapted to other aspect
implementations.

The rest of the paper is organized as follows: in Section 2, we
present a survey of related works. Section 3 is an overview of
our approach to testing aspect-oriented programs. In section 4,
we discuss our approach in detail in four sub sections. Section 5
illustrates our approach using a case study. Finally, Section 6
gives a general conclusion and some future work directions.

2. RELATED WORK
While AOP provides a greater flexibility for modularizing
crosscutting concerns, it cannot provide correctness by itself and
raises new challenges for testing aspect-oriented programs.
Alexander et al. [10] have proposed a fault model for aspect-
oriented programming, including six types of aspect faults:
incorrect strength in pointcut patterns, incorrect aspect
precedence, failure to establish postconditions, failure to
preserve state invariants, incorrect focus of control flow, and
incorrect changes in control dependencies. We believe that,

while this fault model has not yet constituted a fully developed
testing approach, it is certainly useful for developing testing
tools and strategies for aspect-oriented programs.

Zhao in [11] has proposed a data flow-based unit testing
approach for aspect-oriented programs. For each aspect or class,
the approach performs three levels of testing, i.e., intra-module,
inter-module, and intra-aspect/ intra-class testing. Definition-
Use (DU) pairs are calculated to determine what interactions
between aspects and classes must be tested. Zhao and Rinard
[12] have also exploited system dependence graphs to capture
the additional structures present in many aspect-oriented
features such as join points, advice, aspects, and various types of
interactions between aspects and classes. Control flow graphs
are constructed at both module and system level, and code based
test suites are derived from control flow graphs. Zhou et al. [13]
propose a unit testing strategy for aspects. Their approach is
presented in four phases. The first step consists in testing classes
to remove errors that are not in relation with aspects. Each
aspect is integrated and tested separately in a second step.
During the third step, all aspects are integrated and tested in an
incremental way. Finally, the system is entirely retested. This
approach is based on the source code of the program under test.
Xie et al. [14, 15] propose a framework called Aspectra to
automatically generate test inputs for AspectJ programs, where a
wrapper class is created for each base class under test. The
above works concentrate on code based testing. They address
the question of “how much is the program being covered by
testing?” other than “does the program satisfy the
requirements?”. In comparison, our approach focuses on testing
whether or not aspect-oriented programs conform to aspect-
oriented design models.

Xu et al. proposed different approaches for testing aspect-
oriented programs [16, 17, 18]. They proposed in [16] a state-
based approach for unit testing aspect-oriented programs. Their
approach is based on a model called Aspectual State Model
(ASM) that is an extension to the known FREE (Flattened
Regular ExprEssion) state model [19]. The ASM represent the
state-based behavior of an object and also possible behavior
changes introduced by the woven advices. Once the ASM is
created, it can be transformed into a transition tree, which
implies a test suite for adequately testing object behavior and
interaction between classes and aspects in terms of message
sequences. In [17], they presented an incremental testing
approach for aspect-oriented programs. The main idea of this
approach is to reuse the base class tests for testing aspects
according to the state-based impact of aspects on their base
classes. In particular, an extended state model for capturing the
impact of aspects on the state transitions of base class objects as
well as an explicit weaving mechanism for composing aspects
into their base models is presented. In addition, several rules
have been proposed for maximizing reuse of concrete base class
tests for aspects. They also proposed in [18] a state-based
approach for testing integration aspects. They indicate that an
aspect integrating separated concerns, like other aspects, can
contain various programming faults. Thus, they exploit an
aspect-oriented state model to specify integration aspects. By
composing the state models of aspects and classes, they are able
to generate test cases for integration aspects from their state
models. In addition, Xu et al. proposed in [20, 21] an approach
based on different UML design models (class diagrams, aspect
diagrams and sequence diagrams) to derive test cases covering

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 33– No.8, November 2011

6

the interactions between aspects and classes. Liu and Chang in
[22] proposed a state-based testing approach for AOP programs.
The approach considers the state-based behavior changes
introduced by different advices in multiple aspects. A test model
is suggested to depict the state based behavior of aspect-oriented
program after aspect weaving. Based on this model, test cases
can be derived in order to uncover the potential state behavior
errors in the AOP programs. Badri et al. [23] presented a state-
based unit testing technique for aspect-oriented programs and
associated tool that focuses on the integration of one or several
aspects to a class. It supports both the generation and
verification of test sequences and its objective is to ensure that
the integration is done correctly, without altering the original
behavior of the classes. The above works focus on the behavior
of a class where one or more aspects are weaved. Our research is
related to the integration of one or more aspects to the behavior
of a group of objects. We propose an UML activity diagram
based approach to testing aspect-oriented programs that is
capable reveal some of aspect-specific faults in the early stage of
program development. Our work is based on a paper presented
by Cui et al. [24] on modeling and integrating aspects with UML
activity diagram. We improve this work from the perspective of
model-based test sequences generation, and test sequences
execution and verification.

3. OVERVIEW OF OUR APPROCH
The proposed approach consists of three main phases. The first
phase is related to building activity model of the primary
concern and generating the corresponding basic test sequences
without integrating the aspects. The main goal of this step is to
reduce the complexity of the testing process and to eliminate the
faults that are not related to the aspects. The second phase is
related to building aspect models, integrating them into the
primary model incrementally, and generating the corresponding
test sequences based on the testing criteria defined in Section
4.2. The main goals of this step are:

• To verify that the single aspect under test behaves
correctly.

• To test and verify the interaction among aspects and to
eliminate the errors that result from the presence of
multiple aspects.

The third phase consists of verifying the execution of the
selected sequences (the sequences which are generated in two
previous phases). This process is supported by instrumenting the
source code of the program under test. The major steps of our
method are described in the following:

1. Building activity model of the primary concern and
generating the basic test sequences.

2. Testing the primary concern separately.
3. Integrating an aspect. As long as there are aspects

which are not integrated
a. Building aspect model and weave it into primary

model.
b. Generating the test sequences affected or created

by the aspect.
c. Testing the primary concern with the integrated

aspect.
d. If there is no problem encountered, return to step

3.
4. Testing entirely the primary concern including aspects.
5. End.

To instrument the software under the test, we do use an aspect to
capture a trace of the executed methods in a sequence. To test a
sequence, we compile the program along with this aspect.

4. TESTING PROCESS: AN ITERATIVE
APPROCH
In this section, we first discuss the aspect-oriented modeling
with activity diagrams and integrating aspects with primary
models, then we present the proposed testing criteria and
describe test sequences generation process, and finally we
present the test execution and verification process.

4.1 Aspect-Oriented Activity Diagram
Aspect-oriented activity diagrams motivated to capture the
essential features (join points, pointcuts, etc.) of aspect-
orientation for system modeling. We use of Cui et al. [24] work
for modeling aspect-oriented programs with UML activity
diagrams. Similar to the AOP notions, an aspect-oriented
activity model consists of primary models, aspect models, and
aspect precedence. Crosscutting concerns are depicted by aspect
models, which consist of pointcut models and corresponding
advice models. Both of last models specified by extended
activity diagrams.

A pointcut model serves as a predicate to select join points (i.e.
Nodes, Edges, and groups) from primary models and specifies
advice model to be applied to these join points picked out from
the primary models. An advice model specifies additional
enhancements or constraints with respect to the crosscutting
concern under study.

Crosscutting concerns are either sequential or parallel aspects
that are running sequentially or in parallel with primary
concerns. Sequential aspects are critical features that their
running results determine the residual processes in primary
models. Parallel aspects are uncritical and time consuming
features that their running results should not influence the
residual processes in primary models.

For illustrative purpose, Figure 1 shows a simple aspect-oriented
activity model, including primary model, sequential aspect A1
and parallel aspect A2.

The aspect A1 in Figure 1(b) consists of pointcut model
Pointcut1 and the advice model Advice1 for Pointcut1.The
pointcut model Pointcut1 depicted in Figure 1(b) (i) constructed
to select the elements in primary models to which the sequential
advice A1() will be applied. The pointcut model is stereotyped
with <<Pointcut>>. A tagged value “advice” indicates the
corresponding advice model is “Advice1”. This pointcut model
describes the constraints of target join points from the three
facets: the join point is an ActionNode, the name of node is
M04() or M05(); the Node belongs to an ActivityPartition named
“Class b”; the predecessor and successor elements of the node
are arbitrary. There is an argument element “Class b” in the
pointcut model with tagged value “Parameter: =Class c”. This
tagged value maps this argument to the formal parameter
element “Class c” in Advice1. Figure 1(b) (ii) models the A1()
concern as sequential advice which means that the A1() action
needs to be performed before the join point nodes. The advice
model is stereotyped with <<Advice>>. The tagged value
“type”, which is tagged on <<Advice>>, indicates the type of
the advice is “Before”. In the advice model, there is an element

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 33– No.8, November 2011

7

named “Class c” stereotyped <<Parameter>> that serve as a
formal parameter. The two nodes stereotyped <<Entry>> and
<<Exit>> denotes where the tokens will flow in from and flow
out to the primary models respectively.

The aspect A2 in Figure 1(c) consists of pointcut model
Pointcut2 and the advice model Advice2 for Pointcut2. The
pointcut model Pointcut2 depicted in Figure 1(c) (i) constructed
to select the elements in primary models to which the parallel
advice A2() will be applied. The join points should meet the
following constraints defined in this pointcut model: the join
point is an edge of ControlFlow; the edge has a predecessor
node and FlowFinal successor node (the predecessor node is in
an ActivityPartition named Class b, the name of the predecessor
node should be “M05()”). Figure 1(c) (ii) models the A2()
concern as parallel advice. In the advice model, the “A2()”
action is fired at the join point and running in parallel with the
residual flow of the primary model.

C
la

ss
 a

C
la

ss
 b

(a) The primary model

 (i) Pointcut1 (ii) Advice1

(b) The A1 aspect

 (i) Pointcut2 (ii) Advice2

(c) The A2 aspect

Figure 1: A simple aspect-oriented activity model

The semantics of an aspect-oriented activity model essentially
depend on the weaving mechanism that composes aspect models
into primary models. The result of composition is an integrated
model. The integration is done by finding join points in primary

models, initializing advice models, and weaving advices into
primary models.

Figure 2 is the integrated model after weaving the Advice1 with
the primary model. In this model, Advice1 was inserted before
“M04()” and “M05()” nodes. Figure 3 is the integrated model
after weaving the Advice1 and Advice2 with the primary model.
In this model, Advice1 was inserted before the “M04()” and
“M05()” nodes, and Advice2 was inserted after outgoing edge of
the “M05()” node. The definitions of aspect-oriented activity
models and the weaving algorithm can be found in [24].

C
la

ss
 a

C
la

ss
 b

Figure 2: The integrated model with one aspect

C
la

ss
 a

C
la

ss
 b

Figure 3: The integrated model with two aspects

4.2 Testing Criteria
A testing criterion is a rule or a collection of rules that impose
conditions on testing strategies [25, 26]. It also can be used to
evaluate a set of test cases (known as a test suite), or they can be
used to guide the generation of test cases [25]. Testing criteria
are used to determine what should be tested without telling how
to test it. Testing engineers use those criteria to measure the
quality of a test suite in terms of percentage [27]. In this section,
we present several testing criteria.

The first criterion supports the generation of test sequences from
classic activity diagrams of primary concerns. As mentioned
previously, aspects have the capacity of affecting the behavior of
primary concerns. We extend this criterion to cover new
dimensions introduced by aspects.

4.2.1 Action Path Coverage Criterion
First, we consider a priority relation as given below.
Definition1: A priority relation, denoted as ‘<’, over a set of
actions SA in an activity diagram is defined as follows.

1. If an action Ai ϵ SA precedes a fork and Aj ϵ SA is the
first action that exist in any thread originated from the
fork, then Ai < Aj.

2. If an action Aj ϵ SA follows next to a join and Ak ϵ SA is
the last action in any thread joining with the join, then
Ak < Aj.

3. If Ai ϵ SA and Aj ϵ SA are two consecutive concurrent
actions in a thread originated from a fork where Ai exist
before Aj in the thread, then Ai < Aj.

4. If Ai ϵ SA and Aj ϵ SA are two consecutive non-
concurrent actions in an activity diagram where Ai exist
before Aj, then Ai < Aj.

<<Pointcut>>
{advice:= Advice2}

<<Argument>>
{Parameter: = Class c}

Class b

<<Parameter>>
Class c

<<Entry>>
<<Exit>>

A2()

M05()
*

<<
Jo

in
 p

oi
nt

>>

<<Advice>>
{type:= After}

<<Pointcut>>
{advice:= Advice1}

<<Argument>>
{Parameter: = Class c}

Class b

 <<Join point>>
M0*

<<Advice>>
{type:= Before}

<<Parameter>>
Class c

<<Entry>>

<<Exit>> A1()

C
1=

F

C1 = T

M1()

M2()

M3()

M04() M05()

M6()

M1()

M2()

M3()

M04()

M05()

M6()

A1()

A1()
C1=T

C1=F

C1=T C1=F

M1()

M2()

M3()

M04()

M05()

M6()

A1()

A1() C1=T
C1=F

C1=T
C1=F

A2()

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 33– No.8, November 2011

8

An action path is a sequence of actions in an activity diagram,
where each action in the path has at most one occurrence except
those actions that exist within a loop. Note that an action path
considers each output branch of the decision node, a loop at
most two times, and choose one representative action path from
a set of action paths that have same set of actions and satisfy
same set of priority relations.

Next, we define the action path coverage criterion as follows:
Given a set of action paths PA for an activity diagram and a set
of test cases T, for each action path pi ϵ PA there must be a test
case t ϵ T such that when system is executed with a test case t, pi
is exercised.

The above criterion is related to classic activity diagrams. It is
not cover aspects dependencies. Thus, we need to develop new
criteria. The following criteria cover the new dimensions
introduced by aspects. They are based on the faults model
presented by Alexander et al. in [10].

4.2.2 Modified Action Path Coverage Criteria
All action paths that effected by one or several aspects must be
re-tested.

4.2.3 Multi-Aspects Integration Coverage Criterion
If an action in primary model is affected by several aspects, the
action paths that include that action must be re-tested at least
once.

4.3 Test Sequences Generation
We directly generate test sequences from activity diagrams by
following the testing criteria defined in section 4.2. We start by
generating the basic test sequences corresponding to the primary
model and testing the primary concern separately. This is done
to reduce the complexity of the testing process and to remove
the faults related to the primary concern. Table 1 shows the
generated basic test sequences from primary model depicted in
Figure 1 (a).

Table 1. Generated basic test sequences

No Test sequences
1 M1()→M2()→M3()→M04()→M05()→M6()

When all basic test sequences regarding the primary concern are
generated and tested, we proceed to aspects integration. Aspects
are integrated in an incremental way, as mentioned previously,
to facilitate errors detection. The precedence in which aspect
models are integrated explicitly specified. The proceeding order
to introduce advice does not have importance. According to the
criteria established in Section 4.2, we generate the affected
sequences by the aspects. These sequences will be re-tested.
Table 2 shows the generated test sequences from simple-
integrated model in Figure 2, and Table 3 shows the generated
test sequences from multi-integrated model in Figure 3.

Table 2. Generated test sequences for simple-integrated
model

No Test sequences
1 M1()→M2()→M3()→A1()
2 M1()→M2()→M3()→A1()→M04()→A1()

3 M1()→M2()→M3()→A1()→M04()→A1()→M05()
→M6()

4 M1()→M2()→M3()→M04()→M05()→A2()→M6()

Table 3. Generated test sequences for multi-integrated
model

No Test sequences

1 M1()→M2()→M3()→A1()→M04()→A1()→M05()
→A2()→M6()

4.4 Testing Process
The aim of testing process is basically to verify if the executed
sequences are in accordance with the selected ones in one hand,
and if obtained results are in accordance with the expected ones
in other hand. We present the main phases of the testing process
as follows.
For each generated sequence Si:

1. Instrumenting the program under test.
2. Executing the program under test.
3. Analyzing the results.

4.4.1 Instrumenting the Program under Test
When all sequences are generated, we can start the testing
process. In contrast with traditional instrumentation techniques,
we do use aspects to capture a trace of the executed methods in a
given sequence. The advantage of this approach is that we don’t
modify in any way the original source code of the program
under test. Generally, in traditional instrumentation techniques,
many lines of source code are introduced in the program under
test. Those fragments of code may introduce unintentionally
faults [28]. We generate an aspect to capture a trace of the
executed methods in a sequence. When we want to test a
specific sequence, we compile the program with the
corresponding aspect. When a method involved in a sequence is
executed, the tracking aspect will keep information about that
execution.

4.4.2 Executing the Program under Test
We can execute the program under test, after completing the
instrumentation phase. It mainly consists of running the program
and testing a specific sequence. Tester is responsible for
providing test data to ensure the execution of the selected
sequences.

4.4.3 Analyzing Results
When a sequence has been successfully executed, we compare
the executed methods with the expected ones. Because of the
existence concurrent actions in an activity diagram, the expected
method sequences may not be equal to executed method
sequences. To solve this problem we consider the following
definition:
Definition 2: let A be a sequence of executed methods, and B be
a sequence of expected methods, A match B if A and B have
same set of methods and satisfy same set of priority relations
(defined in section 4.2).

Our approach is capable to discover four types of aspect-specific
faults, including incorrect advice type, weak or strong pointcut
strength, and incorrect aspect precedence. A fault of an
incorrect advice type refers to using a type of advice different
from the one defined in the design (for example, an after type
may be used instead of a before type). A weak (or strong)
pointcut means the implementation picks out extra (or misses
expected) join points.

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 33– No.8, November 2011

9

5. CASE STUDY
We have applied the above approach to the testing an AspectJ
application (telecom) taken on AspectJ web site [29]. This
example illustrates some ways that dependent concerns can be
encoded with aspects. It uses an example of system comprising a
simple model of phone connections to which timing and billing
features are added using aspects, where the billing feature
depends upon the timing feature. The classes of the system are:

• Customer that has name and area code fields and models
customers.

• Connection (which is abstract) and two concrete classes
Local and LongDistance, that model the physical details
of establishing local and long distance connections
between customers.

• Call that models telephone calls.
• Timer that models timers.

The aspects of the system are:
• Timing that implements the timing concern and

measures the total connection time for each customer by
starting and stopping a timer associated with each
connection.

• Billing that implements the billing concern on top of
timing concern and declares a payer to each connection
and also makes sure that local and long distance calls are
charged accordingly.

• TimerLog that implements a log to print the times when
the timer starts and stops.

Figure 4 shows integrated model with two aspects Timing and
Billing for the telecom example.

A
bs

tra
ct

Si
m

ul
at

io
n

C
us

to
m

er

C
al

l

Lo
ca

l

Lo
ng

D
is

ta
nc

e

C
on

ne
ct

io
n

Figure 4: The integrated model with two aspects Timing and
Billing

The Timing aspect in Figure 5 consists of two pointcut model
StartTiming pointcut and EndTiming pointcut, and two advice
model StartTiming advice for StartTiming pointcut and
EndTiming advice for EndTiming pointcut. The Billing aspect
in Figure 6 consists of pointcut model Billingcharge pointcut

and advice model Billing charge advice for Billingcharge
pointcut.

(a) StartTiming Pointcut (b) StartTiming advice

(c) EndTiming Pointcut (d) EndTiming advice

Figure 5: Timing aspect

(a) Billingcharge Pointcut (b) Billingcharge advice

Figure 6: Billing aspect

We created several versions of faulty AspectJ code that each
version indicated one specific aspect fault. The faults included
incorrect advice type, weak or strong pointcut strength, and
incorrect aspect precedence. Our experiment results show that
our approach is capable revealing these types of faults. Table 4
shows an example for each of the target fault types. Each row is
for a specific fault type. It includes:

• The specification of advice type, pointcut, and aspect
precedence.

• The expected method sequences.
• The actual implementation of advice type, pointcut, and

aspect precedence.
• The actual method sequences.

Let us take the first row as an example. The expected sequence
is different from the actual sequence. The difference in the
sequences helps us reveal the difference between the
specification and implementation and discover the
corresponding fault: the advice type is changed from After (in

<<Pointcut>>
{advice:= Billingcharge advice}

<<Argument>>
{Parameter: = Connection a}

Connection

<<Advice>>
{type:= After}

<<Parameter>>
Connection a

<<Entry>>

Billingcharge() <<Exit>>
<<Join point>>

drop()

<<Pointcut>>
{advice:= EndTiming advice}

<<Argument>>
{Parameter: = Connection a}

Connection

<<Advice>>
{type:= After}

<<Parameter>>
Connection a

<<Entry>>

EndTimer() <<Exit>>

<<Join point>>
drop()

<<Pointcut>>
{advice:= StartTiming advice}

<<Argument>>
{Parameter: = Connection a}

Connection

<<Advice>>
{type:= Before}

<<Parameter>>
Connection a

<<Entry>>

StartTimer() <<Exit>>

<<Join point>>
complete()

run()

call()

Call()

Local()

LongDistance()

addCall() addCall()

pickup() hangup()

removeCall()

pickup() hangup()

complete()

startaTimer() endTimer() drop()

BillingCharge()

AreaCodeA = AreaCodeB

AreaCodeA != AreaCodeB

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 33– No.8, November 2011

10

the specification) to Before (in the implementation). The second
row describes a weak pointcut fault, where Call (void
Connection.complete()) is replaced with Call (void
Connection.*). The specification only picks out calls to the
complete method of Connection; the implementation, however,
picks out calls to any method of Connection class. The third row
describes a strong pointcut fault where Call (void
Connection.complete()) is replaced with Call (void

Connection.complet()). For both cases, we observe that exist a
difference between the expected and the actual sequences and
use such information to discover the corresponding faults. The
fault described in the fourth row belongs to the type of incorrect
aspect precedence between two aspects Timing and Billing. The
implementation uses an incorrect precedence. Once again, we
can discover the corresponding fault by examining the
difference between the expected and the actual sequences.

Table 4. Examples for revealing different types of faults

Type of
fault

Model Implementation
Advice type/
Pointcut
Pattern/
Aspect
Precedence

Expected sequence

Advice type/
Pointcut
Pattern/
Aspect
precedence

Actual sequence

Incorrect
advice
type

After/
Call (void
Connection.
complete()) /
NA

AbstractSimulation.run()→
Customer.call()→Call.Call()→
[Areacode A = Areacode B] Local.Local()→
Customer.addcall()→
Customer.pickup()→
Call.pickup()→Connection complete()→
Timing.StartTimer()→
Customer.hangup()→Call.hangup()→
Connection.drop()→
Timing.EndTimer()→
Customer.removecall()

Before/
Call (void
Connection.
complete()) /
NA

AbstractSimulation.run()→
Customer.call()→Call.Call()→
[Areacode A = Areacode B] Local.Local()→
Customer.addcall()→
Customer.pickup()→
Call.pickup()→Timing.StartTimer()→
Connection complete()→
Customer.hangup()→
Call.hangup()→Connection.drop()→
Timing.EndTimer()→
Customer.removecall()

Weak
pointcut

After/
Call (void
Connection.
complete())/
NA

AbstractSimulation.run()→
Customer.call()→Call.Call()→
[Areacode A = Areacode B] Local.Local()→
Customer.addcall()→
Customer.pickup()→Call.pickup()→
Connection complete()→
Timing.StartTimer()→
Customer.hangup()→
Call.hangup()→Connection.drop()→
Timing.EndTimer()→
Customer.removecall()

After/
Call (void
Connection.
*)/NA

AbstractSimulation.run()→
Customer.call()→Call.Call()→
[Areacode A = Areacode B] Local.Local()→
Customer.addcall()→
Customer.pickup()→
Call.pickup()→Connection complete()→
Timing.StartTimer()→
Customer.hangup()→Call.hangup()→
Connection.drop()→
Timing.StartTimer()→
Timing.EndTimer()→
Customer.removecall()

Strong
pointcut

After/
Call (void
Connection.
complete())/
NA

AbstractSimulation.run()→
Customer.call()→Call.Call()→
[Areacode A = Areacode B] Local.Local()→
Customer.addcall()→
Customer.pickup()→Call.pickup()→
Connection complete()→
Timing.StartTimer()→
Customer.hangup()→
Call.hangup()→Connection.drop()→
Timing.EndTimer()→
Customer.removecall()

After/
Call (void
Connection.
complet ())/
NA

AbstractSimulation.run()→
Customer.call()→Call.Call()→
[Areacode A = Areacode B] Local.Local()→
Customer.addcall()→
Customer.pickup()→Call.pickup()→
Connection complete()→
Customer.hangup()→Call.hangup()→
Connection.drop()→
Timing.EndTimer()→
Customer.removecall()

Incorrect
precedence

NA/
NA/
Timing,
Billing

AbstractSimulation.run()→
Customer.call()→Call.Call()→
[Areacode A = Areacode B] Local.Local()→
Customer.addcall()→
Customer.pickup()→Call.pickup()→
Connection complete()→
Timing.StartTimer()→
Customer.hangup()→Call.hangup()→
Connection.drop()→
Timing.EndTimer()→
Billing.Billingcharge()→
Customer.removecall()

NA/
NA/
Billing,
Timing

AbstractSimulation.run()→
Customer.call()→Call.Call()→
[Areacode A = Areacode B] Local.Local()→
Customer.addcall()→
Customer.pickup()→Call.pickup()→
Connection complete()→
Timing.StartTimer()→
Customer.hangup()→Call.hangup()→
Connection.drop()→
Billing.Billingcharge()→
Timing.EndTimer()→
Customer.removecall()

6. CONCLUSION AND FUTURE WORK
We present, in this paper, an activity-based testing approach for
aspect-oriented programs. Our approach can help testers reveal

several types of faults that specific to aspectual structures, such
as incorrect advice type, strong or weak pointcut expressions,
and incorrect aspect precedence.

http://www.ijcaonline.org/�

International Journal of Computer Applications (0975 – 8887)
Volume 33– No.8, November 2011

11

Our strategy is divided into three main phases: (1) Building
activity model of the primary concern and generating basic test
sequences based on it. This step verifies if the primary concern
is working correctly and errors, that are not aspect-related, are
eliminated. (2) Building aspect models and integrating them into
the primary model, in an iterative way, and generating the test
sequences corresponding to them based on the defined coverage
criteria. By integrating aspects incrementally, we reduce the
complexity of the test and in case of failure we can precisely
target the origin of the errors. (3) Verifying the generated
sequences. This phase is supported by an instrumentation of the
AspectJ code of the program under test. This makes it possible
to check if the implementation conforms to the specification.

Currently, our approach relies on manual derivation of testing
sequences from the activity models. Nevertheless, it is of
interest to investigate how our approach can enhanced with
automation of test sequence generation.

7. REFERENCES
[1] Filman, R. E., Elrad, T., Clarke, S., and Aksit, M., “Aspect-

Oriented Software Development”, Addison-Wesley
Professional, Boston, 2004.

[2] Hursch, W. L., and Lopes, C. V., “Separation of Concerns”,
Technical Report No. NUCCS-95-03, College of Computer
Science, Northeastern University, Boston, 1995.

[3] Colyer, A., Clement, A., Harly, G., and Webster, M.,
“Eclipse AspectJ: Aspect-Oriented Programming with
AspectJ and the Eclipse AspectJ Development Tools”,
Addison- Wesley Professional, 2004.

[4] El-Far, I. K., and Whittaker, J.A., ‘Model-based software
testing”, In Encyclopedia on Software Engineering (edited
by Marciniak), Wiley, 2001.

[5] Pretschner, A., Prenninger, W., Wagner, S., Kühnel, C.,
Baumgartner, M., Sostawa, B., Zölch, R., and Stauner, T.,
“One evaluation of model-based testing and its
automation”, In Proc. of the 27th International Conf.on
Software Engineering (ICSE'05), 2005.

[6] Pretschner, A., Slotosch, O., Aiglstorfer, E., and Kriebel,
S., “Model-based testing for real - The inhouse card case
study”, J. Software Tools for Technology Transfer 5(2-
3):140-157, 2004.

[7] Dalal, S. R., Jain, A., Karunanithi, N., Leaton, J. M., Lott,
C. M., Patton, G. C., and Horowitz, B. M., ‘Model-based
testing in practice”, In Proc. of the 21st International Conf.
on Software Engineering (ICSE'99), 1999.

[8] Blackburn, M., Busser, R., Nauman, A., Knickerbocker, R.,
and Kasuda, R., “Mars Polar Lander fault identification
using model-based testing”, In Proc. of the Eighth
International Conference on Engineering of Complex
Computer Systems, 2002.

[9] OMG, UML Superstructure v2.1, http://www.omg.org/
documents/formal/uml.htm.

[10] Alexander, R. T., Bieman, J. M., and Andrews, A.A.,
“Towards the systematic testing of aspect-oriented
programs”, Technical Report, Colorado State University,
http://www.cs. colostate.edu/~rta/publications/CS-04-
105.pdf, 2004.

[11] Zhao, J. “Data-flow-based unit testing of aspect-oriented
programs”, Proc. of COMPSAC'03, pp.188-197, Dallas,
Texas, USA, 2003.

[12] Zhao, J. and Rinard, M., “System dependence graph
construction for aspect-oriented programs”, MIT-LCSTR-
891, Laboratory for Computer Science, MIT, 2003.

[13] Zhou, Y., Richardson, D., and Ziv, H., “Towards a practical
approach to test aspect-oriented software”, In Proc. of the
2004 Workshop on Testing Component-based Systems
(TECOS 2004), 2004.

[14] Xie, T. and Zhao, J., “A framework and tool supports for
generating test inputs of AspectJ programs”, In Proc. of the
5th International Conference on Aspect-Oriented Software
Development (AOSD’ 06), pp. 190-201, 2006.

[15] Xie, T., Zhao, J., Marinov, D., and Notkin, D., “Automated
test generation for AspectJ programs”, AOSD 2005
Workshop on Testing Aspect-Oriented Programs, Chicago,
2005.

[16] Xu, D., Xu, W., and Nygard, K., “A state-based approach
to testing aspect-oriented programs”, In Proceedings of the
17th International Conference on Software Engineering and
Knowledge Engineering, pp. 366-371, 2005.

[17] Xu, D., and Xu, W., “State-based incremental testing of
aspect-oriented programs”, In Proceedings of the 5th
International Conference on Aspect-Oriented Software
Development, pp. 180-189, 2006.

[18] Xu, W., and Xu, D., “State-based testing of integration
aspects”, In Proceedings of the 2nd Workshop on Testing
Aspect-Oriented Programs, pp. 7-14, 2006.

[19] Binder, R. V., “Testing Object-Oriented Systems: Models,
Patterns, and Tools”, Addison-Wesley Professional,
Boston, 2000.

[20] Xu, W., Xu, D., and Wong, W. E., “Testing Aspect-
Oriented Programs with UML Design Models”,
International Journal of Software Engineering and
Knowledge Engineering, Vol. 18, No. 3, pp. 413-437, May
2008.

[21] Xu, W. and Xu, D., “A model-based approach to test
generation for aspect-oriented programs”, AOSD 2005
Workshop on Testing Aspect-Oriented Programs, Chicago,
2005.

[22] Liu, C. H., and Chang, C. W., “A State-Based Testing
Approach for Aspect-oriented Programming”, In Journal of
Information Science and Engineering , pp. 11-31, 2008.

[23] Badri, B., Badri, L., Fortin, M. B., “Automated State-Based
Unit Testing for Aspect-Oriented Programs: A Supporting
Framework”, In Journal of Object Technology, vol. 8, no.
3, pp. 121-126, 2009.

[24] Cui, Z., Wang, L., and Li, X., “Modeling and integrating
aspects with uml activity diagrams”, Proceedings of the
2009 ACM symposium on Applied Computing, 2009.

[25] Mortensen, M., and Alexander, R., “Adequate Testing of
Aspect-Oriented Programs”, Technical report CS 04-110,
Colorado State University, Fort Collins, Colorado, USA,
December 2004.

[26] Offut, J., Xiong, Y., and Liu, S., “Criteria for Generating
Specification-based Tests”, In Engineering of Complex
Computer Systems, ICECCS '99, 1999.

[27] Offut, J., and Voas, J., “Subsumption of Condition
Coverage Techniques by Mutation Testing”, ISSE-TR-96-
01, January 1996.

[28] Beizer, B., “Software Testing Techniques”, International
Thomson Computer Press, 1990.

[29] AspectJ Web Site, http://eclipse.org/aspectj/.

http://www.ijcaonline.org/�
http://www.omg/�
http://eclipse.org/aspectj/�

	INTRODUCTION
	RELATED WORK
	OVERVIEW OF OUR APPROCH
	TESTING PROCESS: AN ITERATIVE APPROCH
	Aspect-Oriented Activity Diagram
	Testing Criteria
	Action Path Coverage Criterion
	Modified Action Path Coverage Criteria
	Multi-Aspects Integration Coverage Criterion

	Test Sequences Generation
	Testing Process
	Instrumenting the Program under Test
	Executing the Program under Test
	Analyzing Results

	CASE STUDY
	CONCLUSION AND FUTURE WORK
	REFERENCES

